jl777
9 years ago
33 changed files with 1824 additions and 847 deletions
@ -0,0 +1,277 @@ |
|||
/*-
|
|||
* Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler, 2013 Balthazar |
|||
* All rights reserved. |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* 1. Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* 2. Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in the |
|||
* documentation and/or other materials provided with the distribution. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
|||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|||
* SUCH DAMAGE. |
|||
* |
|||
* This file was originally written by Colin Percival as part of the Tarsnap |
|||
* online backup system. |
|||
*/ |
|||
|
|||
#include "../includes/curve25519.h" |
|||
#define SCRYPT_BUFFER_SIZE (131072 + 63) |
|||
|
|||
/*
|
|||
static inline uint32_t be32dec(const void *pp) |
|||
{ |
|||
const uint8_t *p = (uint8_t const *)pp; |
|||
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); |
|||
} |
|||
|
|||
static inline void be32enc(void *pp,uint32_t x) |
|||
{ |
|||
uint8_t *p = (uint8_t *)pp; |
|||
p[3] = x & 0xff; |
|||
p[2] = (x >> 8) & 0xff; |
|||
p[1] = (x >> 16) & 0xff; |
|||
p[0] = (x >> 24) & 0xff; |
|||
} |
|||
|
|||
void HMAC_SHA256_Init(HMAC_SHA256_CTX *ctx,const void * _K,size_t Klen) |
|||
{ |
|||
size_t i; uint8_t pad[64],khash[32]; const uint8_t * K = (const uint8_t *)_K; |
|||
// If Klen > 64, the key is really SHA256(K).
|
|||
if ( Klen > 64 ) |
|||
{ |
|||
SHA256_Init(&ctx->ictx); |
|||
SHA256_Update(&ctx->ictx, K, Klen); |
|||
SHA256_Final(khash, &ctx->ictx); |
|||
K = khash; |
|||
Klen = 32; |
|||
} |
|||
// Inner SHA256 operation is SHA256(K xor [block of 0x36] || data).
|
|||
SHA256_Init(&ctx->ictx); |
|||
memset(pad, 0x36, 64); |
|||
for (i = 0; i < Klen; i++) |
|||
pad[i] ^= K[i]; |
|||
SHA256_Update(&ctx->ictx, pad, 64); |
|||
// Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash).
|
|||
SHA256_Init(&ctx->octx); |
|||
memset(pad, 0x5c, 64); |
|||
for (i = 0; i < Klen; i++) |
|||
pad[i] ^= K[i]; |
|||
SHA256_Update(&ctx->octx, pad, 64); |
|||
// Clean the stack.
|
|||
memset(khash,0,32); |
|||
} |
|||
|
|||
// Add bytes to the HMAC-SHA256 operation.
|
|||
void HMAC_SHA256_Update(HMAC_SHA256_CTX *ctx,const void *in,size_t len) |
|||
{ |
|||
SHA256_Update(&ctx->ictx,in,len); |
|||
} |
|||
|
|||
// Finish an HMAC-SHA256 operation.
|
|||
void HMAC_SHA256_Final(uint8_t digest[32],HMAC_SHA256_CTX *ctx) |
|||
{ |
|||
uint8_t ihash[32]; |
|||
SHA256_Final(ihash,&ctx->ictx); |
|||
SHA256_Update(&ctx->octx,ihash,32); |
|||
SHA256_Final(digest,&ctx->octx); |
|||
memset(ihash,0,32); |
|||
} |
|||
|
|||
// PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and write the output to buf. The value dkLen must be at most 32 * (2^32 - 1)
|
|||
void PBKDF2_SHA256(const uint8_t *passwd,size_t passwdlen,const uint8_t *salt,size_t saltlen,uint64_t c,uint8_t *buf,size_t dkLen) |
|||
{ |
|||
HMAC_SHA256_CTX PShctx, hctx; |
|||
size_t i,clen; uint8_t ivec[4],U[32],T[32]; uint64_t j; int32_t k; |
|||
// Compute HMAC state after processing P and S.
|
|||
HMAC_SHA256_Init(&PShctx, passwd, passwdlen); |
|||
HMAC_SHA256_Update(&PShctx, salt, saltlen); |
|||
// Iterate through the blocks.
|
|||
for (i=0; i*32<dkLen; i++) |
|||
{ |
|||
// Generate INT(i + 1).
|
|||
be32enc(ivec,(uint32_t)(i + 1)); |
|||
// Compute U_1 = PRF(P, S || INT(i)).
|
|||
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); |
|||
HMAC_SHA256_Update(&hctx, ivec, 4); |
|||
HMAC_SHA256_Final(U, &hctx); |
|||
// T_i = U_1 ...
|
|||
memcpy(T,U,32); |
|||
for (j=2; j<=c; j++) |
|||
{ |
|||
// Compute U_j.
|
|||
HMAC_SHA256_Init(&hctx, passwd, passwdlen); |
|||
HMAC_SHA256_Update(&hctx, U, 32); |
|||
HMAC_SHA256_Final(U, &hctx); |
|||
// ... xor U_j ...
|
|||
for (k=0; k<32; k++) |
|||
T[k] ^= U[k]; |
|||
} |
|||
// Copy as many bytes as necessary into buf
|
|||
clen = dkLen - i * 32; |
|||
if (clen > 32) |
|||
clen = 32; |
|||
memcpy(&buf[i * 32],T,clen); |
|||
} |
|||
}*/ |
|||
|
|||
// Generic scrypt_core implementation
|
|||
|
|||
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) |
|||
{ |
|||
int32_t i; uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; |
|||
x00 = (B[0] ^= Bx[0]); |
|||
x01 = (B[1] ^= Bx[1]); |
|||
x02 = (B[2] ^= Bx[2]); |
|||
x03 = (B[3] ^= Bx[3]); |
|||
x04 = (B[4] ^= Bx[4]); |
|||
x05 = (B[5] ^= Bx[5]); |
|||
x06 = (B[6] ^= Bx[6]); |
|||
x07 = (B[7] ^= Bx[7]); |
|||
x08 = (B[8] ^= Bx[8]); |
|||
x09 = (B[9] ^= Bx[9]); |
|||
x10 = (B[10] ^= Bx[10]); |
|||
x11 = (B[11] ^= Bx[11]); |
|||
x12 = (B[12] ^= Bx[12]); |
|||
x13 = (B[13] ^= Bx[13]); |
|||
x14 = (B[14] ^= Bx[14]); |
|||
x15 = (B[15] ^= Bx[15]); |
|||
for (i = 0; i < 8; i += 2) { |
|||
#define R(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|||
/* Operate on columns. */ |
|||
x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); |
|||
x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); |
|||
|
|||
x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); |
|||
x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); |
|||
|
|||
x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); |
|||
x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); |
|||
|
|||
x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); |
|||
x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); |
|||
|
|||
/* Operate on rows. */ |
|||
x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); |
|||
x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); |
|||
|
|||
x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); |
|||
x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); |
|||
|
|||
x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); |
|||
x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); |
|||
|
|||
x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); |
|||
x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); |
|||
#undef R |
|||
} |
|||
B[0] += x00; |
|||
B[1] += x01; |
|||
B[2] += x02; |
|||
B[3] += x03; |
|||
B[4] += x04; |
|||
B[5] += x05; |
|||
B[6] += x06; |
|||
B[7] += x07; |
|||
B[8] += x08; |
|||
B[9] += x09; |
|||
B[10] += x10; |
|||
B[11] += x11; |
|||
B[12] += x12; |
|||
B[13] += x13; |
|||
B[14] += x14; |
|||
B[15] += x15; |
|||
} |
|||
|
|||
static inline void scrypt_core(uint32_t *X,uint32_t *V) |
|||
{ |
|||
uint32_t i,j,k; |
|||
for (i=0; i<1024; i++) |
|||
{ |
|||
memcpy(&V[i * 32],X,128); |
|||
xor_salsa8(&X[0],&X[16]); |
|||
xor_salsa8(&X[16],&X[0]); |
|||
} |
|||
for (i=0; i<1024; i++) |
|||
{ |
|||
j = 32 * (X[16] & 1023); |
|||
for (k = 0; k < 32; k++) |
|||
X[k] ^= V[j + k]; |
|||
xor_salsa8(&X[0],&X[16]); |
|||
xor_salsa8(&X[16],&X[0]); |
|||
} |
|||
} |
|||
|
|||
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
|
|||
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes |
|||
r = 1, p = 1, N = 1024 |
|||
*/ |
|||
|
|||
bits256 scrypt_nosalt(const void *input,size_t inputlen,void *scratchpad) |
|||
{ |
|||
uint32_t *V; uint32_t X[32]; bits256 result; |
|||
memset(result.bytes,0,sizeof(result)); |
|||
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
|||
calc_hmac_sha256((void *)X,128,(void *)input,(int32_t)inputlen,(void *)input,(int32_t)inputlen); |
|||
//PBKDF2_SHA256((const uint8_t *)input,inputlen,(const uint8_t *)input,inputlen,1,(uint8_t *)X,128);
|
|||
scrypt_core(X,V); |
|||
calc_hmac_sha256((void *)result.bytes,sizeof(result),(void *)input,(int32_t)inputlen,(void *)X,128); |
|||
//PBKDF2_SHA256((const uint8_t *)input,inputlen,(uint8_t *)X,128,1,(uint8_t*)&result,32);
|
|||
return result; |
|||
} |
|||
|
|||
bits256 scrypt(const void *data,size_t datalen,const void *salt,size_t saltlen,void *scratchpad) |
|||
{ |
|||
uint32_t *V; uint32_t X[32]; bits256 result; |
|||
memset(result.bytes,0,sizeof(result)); |
|||
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
|||
calc_hmac_sha256((void *)X,128,(void *)data,(int32_t)datalen,(void *)salt,(int32_t)saltlen); |
|||
//PBKDF2_SHA256((const uint8_t *)data,datalen,(const uint8_t *)salt,saltlen,1,(uint8_t *)X,128);
|
|||
scrypt_core(X,V); |
|||
calc_hmac_sha256((void *)result.bytes,sizeof(result),(void *)data,(int32_t)datalen,(void *)X,128); |
|||
//PBKDF2_SHA256((const uint8_t *)data,datalen,(uint8_t *)X,128,1,(uint8_t *)&result,32);
|
|||
return result; |
|||
} |
|||
|
|||
bits256 scrypt_hash(const void *input,size_t inputlen) |
|||
{ |
|||
uint8_t scratchpad[SCRYPT_BUFFER_SIZE]; |
|||
return scrypt_nosalt(input,inputlen,scratchpad); |
|||
} |
|||
|
|||
bits256 scrypt_salted_hash(const void *input,size_t inputlen,const void *salt,size_t saltlen) |
|||
{ |
|||
uint8_t scratchpad[SCRYPT_BUFFER_SIZE]; |
|||
return scrypt(input,inputlen,salt,saltlen,scratchpad); |
|||
} |
|||
|
|||
bits256 scrypt_salted_multiround_hash(const void *input,size_t inputlen,const void *salt,size_t saltlen,const uint32_t nRounds) |
|||
{ |
|||
uint32_t i; bits256 resultHash = scrypt_salted_hash(input,inputlen,salt,saltlen); |
|||
bits256 transitionalHash = resultHash; |
|||
for(i=1; i<nRounds; i++) |
|||
{ |
|||
resultHash = scrypt_salted_hash(input,inputlen,(const void *)&transitionalHash,32); |
|||
transitionalHash = resultHash; |
|||
} |
|||
return resultHash; |
|||
} |
|||
|
|||
bits256 scrypt_blockhash(const void *input) |
|||
{ |
|||
uint8_t scratchpad[SCRYPT_BUFFER_SIZE]; |
|||
return scrypt_nosalt(input,80,scratchpad); |
|||
} |
|||
|
File diff suppressed because it is too large
@ -1,4 +1,4 @@ |
|||
include ../mingw.path |
|||
LIBS := ../win/libsecp256k1.a ../win/libcrypto.a ../win/libssl.a /usr/share/mingw-w64/lib/libpthread.a ../agents/win32/libcrypto777.a ../win/libcurldll.a /usr/i586-mingw32msvc/lib/libws2_32.a /usr/i586-mingw32msvc/lib/libgdi32.a -I/usr/mingw32/include -I/usr/i386/include -I/usr/i386/include/curl -I/home/user/SuperNET/iguana -I/home/user/SuperNET/includes -I/home/user/SuperNET/crypto777 |
|||
LIBS := /usr/share/mingw-w64/lib/libpthread.a ../agents/win32/libcrypto777.a /usr/i586-mingw32msvc/lib/libws2_32.a /usr/i586-mingw32msvc/lib/libgdi32.a -I/usr/mingw32/include -I/usr/i386/include -I/home/user/SuperNET/iguana -I/home/user/SuperNET/includes -I/home/user/SuperNET/crypto777 |
|||
|
|||
include mingw |
|||
|
File diff suppressed because it is too large
@ -1 +1 @@ |
|||
curl --url "http://127.0.0.1:7778" --data "{\"method\":\"decoderawtransaction\",\"params\":[\"0100000011533957010252b9534fe0186625e3075606f9b547e223830af04b3fb9dab2aaadc7cad5300100000000ffffffff0280969800000000001976a914b7128d2ee837cf03e30a2c0e3e0181f7b9669bb688ac700c023b000000001976a914b7128d2ee837cf03e30a2c0e3e0181f7b9669bb688ac00000000\"]}" |
|||
curl --url "http://127.0.0.1:7778" --data "{\"coin\":\"BTC\",\"method\":\"decoderawtransaction\",\"params\":[\"01000000016def80687bd97e9b932827a9fa8ce20d7e0c9032b3bc3a211a830e80ac0f5d560100000000ffffffff02bb280000000000002308d7019f135580dfb27576a914ca1e04745e8ca0c60d8c5881531d51bec470743f88acb5469800000000001976a9145513ce20df70c082324da1781c222a4d68dfe87988ac00000000\"]}" |
|||
|
Loading…
Reference in new issue