/********************************************************************** * Copyright (c) 2013-2015 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #define SECP256K1_BUILD (1) #define HAVE_CONFIG_H 1 #include "../include/secp256k1.h" #include "util.h" #include "num_impl.h" #include "field_impl.h" #include "scalar_impl.h" #include "group_impl.h" #include "ecmult_impl.h" #include "ecmult_const_impl.h" #include "ecmult_gen_impl.h" #include "ecdsa_impl.h" #include "eckey_impl.h" #include "hash_impl.h" #ifdef ENABLE_MODULE_RANGEPROOF # include "modules/rangeproof/pedersen.h" # include "modules/rangeproof/rangeproof.h" #endif #define ARG_CHECK(cond) do { \ if (EXPECT(!(cond), 0)) { \ secp256k1_callback_call(&ctx->illegal_callback, #cond); \ return 0; \ } \ } while(0) static void default_illegal_callback_fn(const char* str, void* data) { (void)data; fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str); abort(); } static const secp256k1_callback default_illegal_callback = { default_illegal_callback_fn, NULL }; static void default_error_callback_fn(const char* str, void* data) { (void)data; fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str); abort(); } static const secp256k1_callback default_error_callback = { default_error_callback_fn, NULL }; struct secp256k1_context_struct { secp256k1_ecmult_context ecmult_ctx; secp256k1_ecmult_gen_context ecmult_gen_ctx; #ifdef ENABLE_MODULE_RANGEPROOF secp256k1_pedersen_context pedersen_ctx; secp256k1_rangeproof_context rangeproof_ctx; #endif secp256k1_callback illegal_callback; secp256k1_callback error_callback; }; secp256k1_context* secp256k1_context_create(unsigned int flags) { secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context)); ret->illegal_callback = default_illegal_callback; ret->error_callback = default_error_callback; if (EXPECT((flags & SECP256K1_FLAGS_TYPE_MASK) != SECP256K1_FLAGS_TYPE_CONTEXT, 0)) { secp256k1_callback_call(&ret->illegal_callback, "Invalid flags"); free(ret); return NULL; } secp256k1_ecmult_context_init(&ret->ecmult_ctx); secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx); #ifdef ENABLE_MODULE_RANGEPROOF secp256k1_pedersen_context_init(&ret->pedersen_ctx); secp256k1_rangeproof_context_init(&ret->rangeproof_ctx); #endif if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) { secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback); } if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) { secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback); } return ret; } secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) { secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context)); ret->illegal_callback = ctx->illegal_callback; ret->error_callback = ctx->error_callback; secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback); secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback); #ifdef ENABLE_MODULE_RANGEPROOF secp256k1_pedersen_context_clone(&ret->pedersen_ctx, &ctx->pedersen_ctx, &ctx->error_callback); secp256k1_rangeproof_context_clone(&ret->rangeproof_ctx, &ctx->rangeproof_ctx, &ctx->error_callback); #endif return ret; } void secp256k1_context_destroy(secp256k1_context* ctx) { if (ctx != NULL) { secp256k1_ecmult_context_clear(&ctx->ecmult_ctx); secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx); #ifdef ENABLE_MODULE_RANGEPROOF secp256k1_pedersen_context_clear(&ctx->pedersen_ctx); secp256k1_rangeproof_context_clear(&ctx->rangeproof_ctx); #endif free(ctx); } } void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { if (fun == NULL) { fun = default_illegal_callback_fn; } ctx->illegal_callback.fn = fun; ctx->illegal_callback.data = data; } void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { if (fun == NULL) { fun = default_error_callback_fn; } ctx->error_callback.fn = fun; ctx->error_callback.data = data; } static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) { if (sizeof(secp256k1_ge_storage) == 64) { /* When the secp256k1_ge_storage type is exactly 64 byte, use its * representation inside secp256k1_pubkey, as conversion is very fast. * Note that secp256k1_pubkey_save must use the same representation. */ secp256k1_ge_storage s; memcpy(&s, &pubkey->data[0], 64); secp256k1_ge_from_storage(ge, &s); } else { /* Otherwise, fall back to 32-byte big endian for X and Y. */ secp256k1_fe x, y; secp256k1_fe_set_b32(&x, pubkey->data); secp256k1_fe_set_b32(&y, pubkey->data + 32); secp256k1_ge_set_xy(ge, &x, &y); } ARG_CHECK(!secp256k1_fe_is_zero(&ge->x)); return 1; } static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) { if (sizeof(secp256k1_ge_storage) == 64) { secp256k1_ge_storage s; secp256k1_ge_to_storage(&s, ge); memcpy(&pubkey->data[0], &s, 64); } else { VERIFY_CHECK(!secp256k1_ge_is_infinity(ge)); secp256k1_fe_normalize_var(&ge->x); secp256k1_fe_normalize_var(&ge->y); secp256k1_fe_get_b32(pubkey->data, &ge->x); secp256k1_fe_get_b32(pubkey->data + 32, &ge->y); } } int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) { secp256k1_ge Q; (void)ctx; VERIFY_CHECK(ctx != NULL); ARG_CHECK(pubkey != NULL); memset(pubkey, 0, sizeof(*pubkey)); ARG_CHECK(input != NULL); if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) { return 0; } secp256k1_pubkey_save(pubkey, &Q); secp256k1_ge_clear(&Q); return 1; } int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) { secp256k1_ge Q; size_t len; int ret = 0; (void)ctx; VERIFY_CHECK(ctx != NULL); ARG_CHECK(outputlen != NULL); ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65)); len = *outputlen; *outputlen = 0; ARG_CHECK(output != NULL); memset(output, 0, len); ARG_CHECK(pubkey != NULL); ARG_CHECK((flags & SECP256K1_FLAGS_TYPE_MASK) == SECP256K1_FLAGS_TYPE_COMPRESSION); if (secp256k1_pubkey_load(ctx, &Q, pubkey)) { ret = secp256k1_eckey_pubkey_serialize(&Q, output, &len, flags & SECP256K1_FLAGS_BIT_COMPRESSION); if (ret) { *outputlen = len; } } return ret; } static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) { (void)ctx; if (sizeof(secp256k1_scalar) == 32) { /* When the secp256k1_scalar type is exactly 32 byte, use its * representation inside secp256k1_ecdsa_signature, as conversion is very fast. * Note that secp256k1_ecdsa_signature_save must use the same representation. */ memcpy(r, &sig->data[0], 32); memcpy(s, &sig->data[32], 32); } else { secp256k1_scalar_set_b32(r, &sig->data[0], NULL); secp256k1_scalar_set_b32(s, &sig->data[32], NULL); } } static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) { if (sizeof(secp256k1_scalar) == 32) { memcpy(&sig->data[0], r, 32); memcpy(&sig->data[32], s, 32); } else { secp256k1_scalar_get_b32(&sig->data[0], r); secp256k1_scalar_get_b32(&sig->data[32], s); } } int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) { secp256k1_scalar r, s; (void)ctx; ARG_CHECK(sig != NULL); ARG_CHECK(input != NULL); if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) { secp256k1_ecdsa_signature_save(sig, &r, &s); return 1; } else { memset(sig, 0, sizeof(*sig)); return 0; } } int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input64) { secp256k1_scalar r, s; int ret = 1; int overflow = 0; (void)ctx; ARG_CHECK(sig != NULL); ARG_CHECK(input64 != NULL); secp256k1_scalar_set_b32(&r, &input64[0], &overflow); ret &= !overflow; secp256k1_scalar_set_b32(&s, &input64[32], &overflow); ret &= !overflow; if (ret) { secp256k1_ecdsa_signature_save(sig, &r, &s); } else { memset(sig, 0, sizeof(*sig)); } return ret; } int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) { secp256k1_scalar r, s; (void)ctx; ARG_CHECK(output != NULL); ARG_CHECK(outputlen != NULL); ARG_CHECK(sig != NULL); secp256k1_ecdsa_signature_load(ctx, &r, &s, sig); return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s); } int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, const secp256k1_ecdsa_signature* sig) { secp256k1_scalar r, s; (void)ctx; ARG_CHECK(output64 != NULL); ARG_CHECK(sig != NULL); secp256k1_ecdsa_signature_load(ctx, &r, &s, sig); secp256k1_scalar_get_b32(&output64[0], &r); secp256k1_scalar_get_b32(&output64[32], &s); return 1; } int secp256k1_ecdsa_signature_normalize(const secp256k1_context* ctx, secp256k1_ecdsa_signature *sigout, const secp256k1_ecdsa_signature *sigin) { secp256k1_scalar r, s; int ret = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(sigin != NULL); secp256k1_ecdsa_signature_load(ctx, &r, &s, sigin); ret = secp256k1_scalar_is_high(&s); if (sigout != NULL) { if (ret) { secp256k1_scalar_negate(&s, &s); } secp256k1_ecdsa_signature_save(sigout, &r, &s); } return ret; } int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) { secp256k1_ge q; secp256k1_scalar r, s; secp256k1_scalar m; VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); ARG_CHECK(msg32 != NULL); ARG_CHECK(sig != NULL); ARG_CHECK(pubkey != NULL); secp256k1_scalar_set_b32(&m, msg32, NULL); secp256k1_ecdsa_signature_load(ctx, &r, &s, sig); return (!secp256k1_scalar_is_high(&s) && secp256k1_pubkey_load(ctx, &q, pubkey) && secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m)); } static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { unsigned char keydata[112]; int keylen = 64; secp256k1_rfc6979_hmac_sha256_t rng; unsigned int i; /* We feed a byte array to the PRNG as input, consisting of: * - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d. * - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data. * - optionally 16 extra bytes with the algorithm name. * Because the arguments have distinct fixed lengths it is not possible for * different argument mixtures to emulate each other and result in the same * nonces. */ memcpy(keydata, key32, 32); memcpy(keydata + 32, msg32, 32); if (data != NULL) { memcpy(keydata + 64, data, 32); keylen = 96; } if (algo16 != NULL) { memcpy(keydata + keylen, algo16, 16); keylen += 16; } secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, keylen); memset(keydata, 0, sizeof(keydata)); for (i = 0; i <= counter; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); } secp256k1_rfc6979_hmac_sha256_finalize(&rng); return 1; } const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979; const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979; int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { secp256k1_scalar r, s; secp256k1_scalar sec, non, msg; int ret = 0; int overflow = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); ARG_CHECK(msg32 != NULL); ARG_CHECK(signature != NULL); ARG_CHECK(seckey != NULL); if (noncefp == NULL) { noncefp = secp256k1_nonce_function_default; } secp256k1_scalar_set_b32(&sec, seckey, &overflow); /* Fail if the secret key is invalid. */ if (!overflow && !secp256k1_scalar_is_zero(&sec)) { unsigned int count = 0; secp256k1_scalar_set_b32(&msg, msg32, NULL); while (1) { unsigned char nonce32[32]; ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count); if (!ret) { break; } secp256k1_scalar_set_b32(&non, nonce32, &overflow); memset(nonce32, 0, 32); if (!overflow && !secp256k1_scalar_is_zero(&non)) { if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) { break; } } count++; } secp256k1_scalar_clear(&msg); secp256k1_scalar_clear(&non); secp256k1_scalar_clear(&sec); } if (ret) { secp256k1_ecdsa_signature_save(signature, &r, &s); } else { memset(signature, 0, sizeof(*signature)); } return ret; } int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) { secp256k1_scalar sec; int ret; int overflow; VERIFY_CHECK(ctx != NULL); ARG_CHECK(seckey != NULL); (void)ctx; secp256k1_scalar_set_b32(&sec, seckey, &overflow); ret = !overflow && !secp256k1_scalar_is_zero(&sec); secp256k1_scalar_clear(&sec); return ret; } int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) { secp256k1_gej pj; secp256k1_ge p; secp256k1_scalar sec; int overflow; int ret = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(pubkey != NULL); memset(pubkey, 0, sizeof(*pubkey)); ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); ARG_CHECK(seckey != NULL); secp256k1_scalar_set_b32(&sec, seckey, &overflow); ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec)); if (ret) { secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec); secp256k1_ge_set_gej(&p, &pj); secp256k1_pubkey_save(pubkey, &p); } secp256k1_scalar_clear(&sec); return ret; } int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) { secp256k1_scalar term; secp256k1_scalar sec; int ret = 0; int overflow = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(seckey != NULL); ARG_CHECK(tweak != NULL); (void)ctx; secp256k1_scalar_set_b32(&term, tweak, &overflow); secp256k1_scalar_set_b32(&sec, seckey, NULL); ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term); memset(seckey, 0, 32); if (ret) { secp256k1_scalar_get_b32(seckey, &sec); } secp256k1_scalar_clear(&sec); secp256k1_scalar_clear(&term); return ret; } int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) { secp256k1_ge p; secp256k1_scalar term; int ret = 0; int overflow = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); ARG_CHECK(pubkey != NULL); ARG_CHECK(tweak != NULL); secp256k1_scalar_set_b32(&term, tweak, &overflow); ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey); memset(pubkey, 0, sizeof(*pubkey)); if (ret) { if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) { secp256k1_pubkey_save(pubkey, &p); } else { ret = 0; } } return ret; } int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) { secp256k1_scalar factor; secp256k1_scalar sec; int ret = 0; int overflow = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(seckey != NULL); ARG_CHECK(tweak != NULL); (void)ctx; secp256k1_scalar_set_b32(&factor, tweak, &overflow); secp256k1_scalar_set_b32(&sec, seckey, NULL); ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor); memset(seckey, 0, 32); if (ret) { secp256k1_scalar_get_b32(seckey, &sec); } secp256k1_scalar_clear(&sec); secp256k1_scalar_clear(&factor); return ret; } int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) { secp256k1_ge p; secp256k1_scalar factor; int ret = 0; int overflow = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); ARG_CHECK(pubkey != NULL); ARG_CHECK(tweak != NULL); secp256k1_scalar_set_b32(&factor, tweak, &overflow); ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey); memset(pubkey, 0, sizeof(*pubkey)); if (ret) { if (secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor)) { secp256k1_pubkey_save(pubkey, &p); } else { ret = 0; } } return ret; } int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) { VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); return 1; } int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, size_t n) { size_t i; secp256k1_gej Qj; secp256k1_ge Q; ARG_CHECK(pubnonce != NULL); memset(pubnonce, 0, sizeof(*pubnonce)); ARG_CHECK(n >= 1); ARG_CHECK(pubnonces != NULL); secp256k1_gej_set_infinity(&Qj); for (i = 0; i < n; i++) { secp256k1_pubkey_load(ctx, &Q, pubnonces[i]); secp256k1_gej_add_ge(&Qj, &Qj, &Q); } if (secp256k1_gej_is_infinity(&Qj)) return 0; secp256k1_ge_set_gej(&Q, &Qj); secp256k1_pubkey_save(pubnonce, &Q); return 1; } #ifdef ENABLE_MODULE_ECDH # include "modules/ecdh/main_impl.h" #endif #ifdef ENABLE_MODULE_SCHNORR # include "modules/schnorr/main_impl.h" #endif #ifdef ENABLE_MODULE_RECOVERY # include "modules/recovery/main_impl.h" #endif #ifdef ENABLE_MODULE_RANGEPROOF # include "modules/rangeproof/main_impl.h" #endif