/****************************************************************************** * Copyright © 2014-2015 The SuperNET Developers. * * * * See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at * * the top-level directory of this distribution for the individual copyright * * holder information and the developer policies on copyright and licensing. * * * * Unless otherwise agreed in a custom licensing agreement, no part of the * * SuperNET software, including this file may be copied, modified, propagated * * or distributed except according to the terms contained in the LICENSE file * * * * Removal or modification of this copyright notice is prohibited. * * * ******************************************************************************/ // derived from curve25519_donna #include "../includes/curve25519.h" #undef force_inline #define force_inline __attribute__((always_inline)) // Sum two numbers: output += in static inline bits320 force_inline fsum(bits320 output,bits320 in) { int32_t i; for (i=0; i<5; i++) output.ulongs[i] += in.ulongs[i]; return(output); } static inline void force_inline fdifference_backwards(uint64_t *out,const uint64_t *in) { static const uint64_t two54m152 = (((uint64_t)1) << 54) - 152; // 152 is 19 << 3 static const uint64_t two54m8 = (((uint64_t)1) << 54) - 8; int32_t i; out[0] = in[0] + two54m152 - out[0]; for (i=1; i<5; i++) out[i] = in[i] + two54m8 - out[i]; } inline void force_inline store_limb(uint8_t *out,uint64_t in) { int32_t i; for (i=0; i<8; i++,in>>=8) out[i] = (in & 0xff); } static inline uint64_t force_inline load_limb(uint8_t *in) { return ((uint64_t)in[0]) | (((uint64_t)in[1]) << 8) | (((uint64_t)in[2]) << 16) | (((uint64_t)in[3]) << 24) | (((uint64_t)in[4]) << 32) | (((uint64_t)in[5]) << 40) | (((uint64_t)in[6]) << 48) | (((uint64_t)in[7]) << 56); } // Take a little-endian, 32-byte number and expand it into polynomial form bits320 fexpand(bits256 basepoint) { bits320 out; out.ulongs[0] = load_limb(basepoint.bytes) & 0x7ffffffffffffLL; out.ulongs[1] = (load_limb(basepoint.bytes+6) >> 3) & 0x7ffffffffffffLL; out.ulongs[2] = (load_limb(basepoint.bytes+12) >> 6) & 0x7ffffffffffffLL; out.ulongs[3] = (load_limb(basepoint.bytes+19) >> 1) & 0x7ffffffffffffLL; out.ulongs[4] = (load_limb(basepoint.bytes+24) >> 12) & 0x7ffffffffffffLL; return(out); } #if __amd64__ // donna: special gcc mode for 128-bit integers. It's implemented on 64-bit platforms only as far as I know. typedef unsigned uint128_t __attribute__((mode(TI))); // Multiply a number by a scalar: output = in * scalar static inline bits320 force_inline fscalar_product(const bits320 in,const uint64_t scalar) { int32_t i; uint128_t a = 0; bits320 output; a = ((uint128_t)in.ulongs[0]) * scalar; output.ulongs[0] = ((uint64_t)a) & 0x7ffffffffffffLL; for (i=1; i<5; i++) { a = ((uint128_t)in.ulongs[i]) * scalar + ((uint64_t) (a >> 51)); output.ulongs[i] = ((uint64_t)a) & 0x7ffffffffffffLL; } output.ulongs[0] += (a >> 51) * 19; return(output); } // Multiply two numbers: output = in2 * in // output must be distinct to both inputs. The inputs are reduced coefficient form, the output is not. // Assumes that in[i] < 2**55 and likewise for in2. On return, output[i] < 2**52 bits320 fmul(const bits320 in2,const bits320 in) { uint128_t t[5]; uint64_t r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c; bits320 out; r0 = in.ulongs[0], r1 = in.ulongs[1], r2 = in.ulongs[2], r3 = in.ulongs[3], r4 = in.ulongs[4]; s0 = in2.ulongs[0], s1 = in2.ulongs[1], s2 = in2.ulongs[2], s3 = in2.ulongs[3], s4 = in2.ulongs[4]; t[0] = ((uint128_t) r0) * s0; t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0; t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1; t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1; t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2; r4 *= 19, r1 *= 19, r2 *= 19, r3 *= 19; t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2; t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3; t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4; t[3] += ((uint128_t) r4) * s4; r0 = (uint64_t)t[0] & 0x7ffffffffffffLL; c = (uint64_t)(t[0] >> 51); t[1] += c; r1 = (uint64_t)t[1] & 0x7ffffffffffffLL; c = (uint64_t)(t[1] >> 51); t[2] += c; r2 = (uint64_t)t[2] & 0x7ffffffffffffLL; c = (uint64_t)(t[2] >> 51); t[3] += c; r3 = (uint64_t)t[3] & 0x7ffffffffffffLL; c = (uint64_t)(t[3] >> 51); t[4] += c; r4 = (uint64_t)t[4] & 0x7ffffffffffffLL; c = (uint64_t)(t[4] >> 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffffLL; r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffffLL; r2 += c; out.ulongs[0] = r0, out.ulongs[1] = r1, out.ulongs[2] = r2, out.ulongs[3] = r3, out.ulongs[4] = r4; return(out); } inline bits320 force_inline fsquare_times(const bits320 in,uint64_t count) { uint128_t t[5]; uint64_t r0,r1,r2,r3,r4,c,d0,d1,d2,d4,d419; bits320 out; r0 = in.ulongs[0], r1 = in.ulongs[1], r2 = in.ulongs[2], r3 = in.ulongs[3], r4 = in.ulongs[4]; do { d0 = r0 * 2; d1 = r1 * 2; d2 = r2 * 2 * 19; d419 = r4 * 19; d4 = d419 * 2; t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1 + (((uint128_t) d2) * (r3 )); t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2 + (((uint128_t) r3) * (r3 * 19)); t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1 + (((uint128_t) d4) * (r3 )); t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2 + (((uint128_t) r4) * (d419 )); t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3 + (((uint128_t) r2) * (r2 )); r0 = (uint64_t)t[0] & 0x7ffffffffffffLL; c = (uint64_t)(t[0] >> 51); t[1] += c; r1 = (uint64_t)t[1] & 0x7ffffffffffffLL; c = (uint64_t)(t[1] >> 51); t[2] += c; r2 = (uint64_t)t[2] & 0x7ffffffffffffLL; c = (uint64_t)(t[2] >> 51); t[3] += c; r3 = (uint64_t)t[3] & 0x7ffffffffffffL; c = (uint64_t)(t[3] >> 51); t[4] += c; r4 = (uint64_t)t[4] & 0x7ffffffffffffLL; c = (uint64_t)(t[4] >> 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffffLL; r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffffLL; r2 += c; } while( --count ); out.ulongs[0] = r0, out.ulongs[1] = r1, out.ulongs[2] = r2, out.ulongs[3] = r3, out.ulongs[4] = r4; return(out); } static inline void force_inline fcontract_iter(uint128_t t[5],int32_t flag) { int32_t i; uint64_t mask = 0x7ffffffffffffLL; for (i=0; i<4; i++) t[i+1] += t[i] >> 51, t[i] &= mask; if ( flag != 0 ) t[0] += 19 * (t[4] >> 51); t[4] &= mask; } // donna: Take a fully reduced polynomial form number and contract it into a little-endian, 32-byte array bits256 fcontract(const bits320 input) { uint128_t t[5]; int32_t i; bits256 out; for (i=0; i<5; i++) t[i] = input.ulongs[i]; fcontract_iter(t,1), fcontract_iter(t,1); // donna: now t is between 0 and 2^255-1, properly carried. // donna: case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. t[0] += 19, fcontract_iter(t,1); // now between 19 and 2^255-1 in both cases, and offset by 19. t[0] += 0x8000000000000 - 19; for (i=1; i<5; i++) t[i] += 0x8000000000000 - 1; // now between 2^255 and 2^256-20, and offset by 2^255. fcontract_iter(t,0); store_limb(out.bytes,t[0] | (t[1] << 51)); store_limb(out.bytes+8,(t[1] >> 13) | (t[2] << 38)); store_limb(out.bytes+16,(t[2] >> 26) | (t[3] << 25)); store_limb(out.bytes+24,(t[3] >> 39) | (t[4] << 12)); return(out); } bits256 curve25519(bits256 mysecret,bits256 basepoint) { bits320 bp,x,z; bp = fexpand(basepoint); cmult(&x,&z,mysecret,bp); return(fcontract(fmul(x,crecip(z)))); } #else // from curve25519-donna.c typedef uint8_t u8; typedef int32_t s32; typedef int64_t limb; /* Multiply a number by a scalar: output = in * scalar */ static void fscalar_product32(limb *output, const limb *in, const limb scalar) { unsigned i; for (i = 0; i < 10; ++i) { output[i] = in[i] * scalar; } } /* Multiply two numbers: output = in2 * in * * output must be distinct to both inputs. The inputs are reduced coefficient * form, the output is not. * * output[x] <= 14 * the largest product of the input limbs. static void fproduct(limb *output, const limb *in2, const limb *in) { output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]); output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) + ((limb) ((s32) in2[1])) * ((s32) in[0]); output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[2]) + ((limb) ((s32) in2[2])) * ((s32) in[0]); output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) + ((limb) ((s32) in2[2])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[3]) + ((limb) ((s32) in2[3])) * ((s32) in[0]); output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) + 2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) + ((limb) ((s32) in2[3])) * ((s32) in[1])) + ((limb) ((s32) in2[0])) * ((s32) in[4]) + ((limb) ((s32) in2[4])) * ((s32) in[0]); output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) + ((limb) ((s32) in2[3])) * ((s32) in[2]) + ((limb) ((s32) in2[1])) * ((s32) in[4]) + ((limb) ((s32) in2[4])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[0]); output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) + ((limb) ((s32) in2[1])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[1])) + ((limb) ((s32) in2[2])) * ((s32) in[4]) + ((limb) ((s32) in2[4])) * ((s32) in[2]) + ((limb) ((s32) in2[0])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[0]); output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) + ((limb) ((s32) in2[4])) * ((s32) in[3]) + ((limb) ((s32) in2[2])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[2]) + ((limb) ((s32) in2[1])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[0]); output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) + 2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[3]) + ((limb) ((s32) in2[1])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[1])) + ((limb) ((s32) in2[2])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[2]) + ((limb) ((s32) in2[0])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[0]); output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[4]) + ((limb) ((s32) in2[3])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[3]) + ((limb) ((s32) in2[2])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[2]) + ((limb) ((s32) in2[1])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[0]); output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) + ((limb) ((s32) in2[3])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[3]) + ((limb) ((s32) in2[1])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[1])) + ((limb) ((s32) in2[4])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[4]) + ((limb) ((s32) in2[2])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[2]); output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[5]) + ((limb) ((s32) in2[4])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[4]) + ((limb) ((s32) in2[3])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[3]) + ((limb) ((s32) in2[2])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[2]); output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) + 2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[5]) + ((limb) ((s32) in2[3])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[3])) + ((limb) ((s32) in2[4])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[4]); output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[6]) + ((limb) ((s32) in2[5])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[5]) + ((limb) ((s32) in2[4])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[4]); output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) + ((limb) ((s32) in2[5])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[5])) + ((limb) ((s32) in2[6])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[6]); output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[7]) + ((limb) ((s32) in2[6])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[6]); output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) + 2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[7])); output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[8]); output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]); }*/ /* Reduce a long form to a short form by taking the input mod 2^255 - 19. * * On entry: |output[i]| < 14*2^54 * On exit: |output[0..8]| < 280*2^54 */ static void freduce_degree(limb *output) { /* Each of these shifts and adds ends up multiplying the value by 19. * * For output[0..8], the absolute entry value is < 14*2^54 and we add, at * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */ output[8] += output[18] << 4; output[8] += output[18] << 1; output[8] += output[18]; output[7] += output[17] << 4; output[7] += output[17] << 1; output[7] += output[17]; output[6] += output[16] << 4; output[6] += output[16] << 1; output[6] += output[16]; output[5] += output[15] << 4; output[5] += output[15] << 1; output[5] += output[15]; output[4] += output[14] << 4; output[4] += output[14] << 1; output[4] += output[14]; output[3] += output[13] << 4; output[3] += output[13] << 1; output[3] += output[13]; output[2] += output[12] << 4; output[2] += output[12] << 1; output[2] += output[12]; output[1] += output[11] << 4; output[1] += output[11] << 1; output[1] += output[11]; output[0] += output[10] << 4; output[0] += output[10] << 1; output[0] += output[10]; } #if (-1 & 3) != 3 #error "This code only works on a two's complement system" #endif /* return v / 2^26, using only shifts and adds. * * On entry: v can take any value. */ static inline limb div_by_2_26(const limb v) { /* High word of v; no shift needed. */ const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); /* Set to all 1s if v was negative; else set to 0s. */ const int32_t sign = ((int32_t) highword) >> 31; /* Set to 0x3ffffff if v was negative; else set to 0. */ const int32_t roundoff = ((uint32_t) sign) >> 6; /* Should return v / (1<<26) */ return (v + roundoff) >> 26; } /* return v / (2^25), using only shifts and adds. * * On entry: v can take any value. */ static inline limb div_by_2_25(const limb v) { /* High word of v; no shift needed*/ const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); /* Set to all 1s if v was negative; else set to 0s. */ const int32_t sign = ((int32_t) highword) >> 31; /* Set to 0x1ffffff if v was negative; else set to 0. */ const int32_t roundoff = ((uint32_t) sign) >> 7; /* Should return v / (1<<25) */ return (v + roundoff) >> 25; } /* Reduce all coefficients of the short form input so that |x| < 2^26. * * On entry: |output[i]| < 280*2^54 */ static void freduce_coefficients(limb *output) { unsigned i; output[10] = 0; for (i = 0; i < 10; i += 2) { limb over = div_by_2_26(output[i]); /* The entry condition (that |output[i]| < 280*2^54) means that over is, at * most, 280*2^28 in the first iteration of this loop. This is added to the * next limb and we can approximate the resulting bound of that limb by * 281*2^54. */ output[i] -= over << 26; output[i+1] += over; /* For the first iteration, |output[i+1]| < 281*2^54, thus |over| < * 281*2^29. When this is added to the next limb, the resulting bound can * be approximated as 281*2^54. * * For subsequent iterations of the loop, 281*2^54 remains a conservative * bound and no overflow occurs. */ over = div_by_2_25(output[i+1]); output[i+1] -= over << 25; output[i+2] += over; } /* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */ output[0] += output[10] << 4; output[0] += output[10] << 1; output[0] += output[10]; output[10] = 0; /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29 * So |over| will be no more than 2^16. */ { limb over = div_by_2_26(output[0]); output[0] -= over << 26; output[1] += over; } /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The * bound on |output[1]| is sufficient to meet our needs. */ } /* A helpful wrapper around fproduct: output = in * in2. * * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27. * * output must be distinct to both inputs. The output is reduced degree * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. static void fmul32(limb *output, const limb *in, const limb *in2) { limb t[19]; fproduct(t, in, in2); //|t[i]| < 14*2^54 freduce_degree(t); freduce_coefficients(t); // |t[i]| < 2^26 memcpy(output, t, sizeof(limb) * 10); }*/ /* Square a number: output = in**2 * * output must be distinct from the input. The inputs are reduced coefficient * form, the output is not. * * output[x] <= 14 * the largest product of the input limbs. */ static void fsquare_inner(limb *output, const limb *in) { output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]); output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]); output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) + ((limb) ((s32) in[0])) * ((s32) in[2])); output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) + ((limb) ((s32) in[0])) * ((s32) in[3])); output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) + 4 * ((limb) ((s32) in[1])) * ((s32) in[3]) + 2 * ((limb) ((s32) in[0])) * ((s32) in[4]); output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) + ((limb) ((s32) in[1])) * ((s32) in[4]) + ((limb) ((s32) in[0])) * ((s32) in[5])); output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) + ((limb) ((s32) in[2])) * ((s32) in[4]) + ((limb) ((s32) in[0])) * ((s32) in[6]) + 2 * ((limb) ((s32) in[1])) * ((s32) in[5])); output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) + ((limb) ((s32) in[2])) * ((s32) in[5]) + ((limb) ((s32) in[1])) * ((s32) in[6]) + ((limb) ((s32) in[0])) * ((s32) in[7])); output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) + 2 * (((limb) ((s32) in[2])) * ((s32) in[6]) + ((limb) ((s32) in[0])) * ((s32) in[8]) + 2 * (((limb) ((s32) in[1])) * ((s32) in[7]) + ((limb) ((s32) in[3])) * ((s32) in[5]))); output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) + ((limb) ((s32) in[3])) * ((s32) in[6]) + ((limb) ((s32) in[2])) * ((s32) in[7]) + ((limb) ((s32) in[1])) * ((s32) in[8]) + ((limb) ((s32) in[0])) * ((s32) in[9])); output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) + ((limb) ((s32) in[4])) * ((s32) in[6]) + ((limb) ((s32) in[2])) * ((s32) in[8]) + 2 * (((limb) ((s32) in[3])) * ((s32) in[7]) + ((limb) ((s32) in[1])) * ((s32) in[9]))); output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) + ((limb) ((s32) in[4])) * ((s32) in[7]) + ((limb) ((s32) in[3])) * ((s32) in[8]) + ((limb) ((s32) in[2])) * ((s32) in[9])); output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) + 2 * (((limb) ((s32) in[4])) * ((s32) in[8]) + 2 * (((limb) ((s32) in[5])) * ((s32) in[7]) + ((limb) ((s32) in[3])) * ((s32) in[9]))); output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) + ((limb) ((s32) in[5])) * ((s32) in[8]) + ((limb) ((s32) in[4])) * ((s32) in[9])); output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) + ((limb) ((s32) in[6])) * ((s32) in[8]) + 2 * ((limb) ((s32) in[5])) * ((s32) in[9])); output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) + ((limb) ((s32) in[6])) * ((s32) in[9])); output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) + 4 * ((limb) ((s32) in[7])) * ((s32) in[9]); output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]); output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]); } /* fsquare sets output = in^2. * * On entry: The |in| argument is in reduced coefficients form and |in[i]| < * 2^27. * * On exit: The |output| argument is in reduced coefficients form (indeed, one * need only provide storage for 10 limbs) and |out[i]| < 2^26. */ static void fsquare32(limb *output, const limb *in) { limb t[19]; fsquare_inner(t, in); /* |t[i]| < 14*2^54 because the largest product of two limbs will be < * 2^(27+27) and fsquare_inner adds together, at most, 14 of those * products. */ freduce_degree(t); freduce_coefficients(t); /* |t[i]| < 2^26 */ memcpy(output, t, sizeof(limb) * 10); } #if (-32 >> 1) != -16 #error "This code only works when >> does sign-extension on negative numbers" #endif /* s32_eq returns 0xffffffff iff a == b and zero otherwise. */ static s32 s32_eq(s32 a, s32 b) { a = ~(a ^ b); a &= a << 16; a &= a << 8; a &= a << 4; a &= a << 2; a &= a << 1; return a >> 31; } /* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are * both non-negative. */ static s32 s32_gte(s32 a, s32 b) { a -= b; /* a >= 0 iff a >= b. */ return ~(a >> 31); } /* Take a fully reduced polynomial form number and contract it into a * little-endian, 32-byte array. * * On entry: |input_limbs[i]| < 2^26 */ static void fcontract32(u8 *output, limb *input_limbs) { int i; int j; s32 input[10]; s32 mask; /* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */ for (i = 0; i < 10; i++) input[i] = (s32)input_limbs[i]; for (j = 0; j < 2; ++j) { for (i = 0; i < 9; ++i) { if ((i & 1) == 1) { /* This calculation is a time-invariant way to make input[i] * non-negative by borrowing from the next-larger limb. */ const s32 mask = input[i] >> 31; const s32 carry = -((input[i] & mask) >> 25); input[i] = input[i] + (carry << 25); input[i+1] = input[i+1] - carry; } else { const s32 mask = input[i] >> 31; const s32 carry = -((input[i] & mask) >> 26); input[i] = input[i] + (carry << 26); input[i+1] = input[i+1] - carry; } } /* There's no greater limb for input[9] to borrow from, but we can multiply * by 19 and borrow from input[0], which is valid mod 2^255-19. */ { const s32 mask = input[9] >> 31; const s32 carry = -((input[9] & mask) >> 25); input[9] = input[9] + (carry << 25); input[0] = input[0] - (carry * 19); } /* After the first iteration, input[1..9] are non-negative and fit within * 25 or 26 bits, depending on position. However, input[0] may be * negative. */ } /* The first borrow-propagation pass above ended with every limb except (possibly) input[0] non-negative. If input[0] was negative after the first pass, then it was because of a carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most, one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19. In the second pass, each limb is decreased by at most one. Thus the second borrow-propagation pass could only have wrapped around to decrease input[0] again if the first pass left input[0] negative *and* input[1] through input[9] were all zero. In that case, input[1] is now 2^25 - 1, and this last borrow-propagation step will leave input[1] non-negative. */ { const s32 mask = input[0] >> 31; const s32 carry = -((input[0] & mask) >> 26); input[0] = input[0] + (carry << 26); input[1] = input[1] - carry; } /* All input[i] are now non-negative. However, there might be values between * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */ for (j = 0; j < 2; j++) { for (i = 0; i < 9; i++) { if ((i & 1) == 1) { const s32 carry = input[i] >> 25; input[i] &= 0x1ffffff; input[i+1] += carry; } else { const s32 carry = input[i] >> 26; input[i] &= 0x3ffffff; input[i+1] += carry; } } { const s32 carry = input[9] >> 25; input[9] &= 0x1ffffff; input[0] += 19*carry; } } /* If the first carry-chain pass, just above, ended up with a carry from * input[9], and that caused input[0] to be out-of-bounds, then input[0] was * < 2^26 + 2*19, because the carry was, at most, two. * * If the second pass carried from input[9] again then input[0] is < 2*19 and * the input[9] -> input[0] carry didn't push input[0] out of bounds. */ /* It still remains the case that input might be between 2^255-19 and 2^255. * In this case, input[1..9] must take their maximum value and input[0] must * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */ mask = s32_gte(input[0], 0x3ffffed); for (i = 1; i < 10; i++) { if ((i & 1) == 1) { mask &= s32_eq(input[i], 0x1ffffff); } else { mask &= s32_eq(input[i], 0x3ffffff); } } /* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus * this conditionally subtracts 2^255-19. */ input[0] -= mask & 0x3ffffed; for (i = 1; i < 10; i++) { if ((i & 1) == 1) { input[i] -= mask & 0x1ffffff; } else { input[i] -= mask & 0x3ffffff; } } input[1] <<= 2; input[2] <<= 3; input[3] <<= 5; input[4] <<= 6; input[6] <<= 1; input[7] <<= 3; input[8] <<= 4; input[9] <<= 6; #define F(i, s) \ output[s+0] |= input[i] & 0xff; \ output[s+1] = (input[i] >> 8) & 0xff; \ output[s+2] = (input[i] >> 16) & 0xff; \ output[s+3] = (input[i] >> 24) & 0xff; output[0] = 0; output[16] = 0; F(0,0); F(1,3); F(2,6); F(3,9); F(4,12); F(5,16); F(6,19); F(7,22); F(8,25); F(9,28); #undef F } bits320 bits320_limbs(limb limbs[10]) { bits320 output; int32_t i; for (i=0; i<10; i++) output.uints[i] = limbs[i]; return(output); } static inline bits320 force_inline fscalar_product(const bits320 in,const uint64_t scalar) { limb output[10],input[10]; int32_t i; for (i=0; i<10; i++) input[i] = in.uints[i]; fscalar_product32(output,input,scalar); return(bits320_limbs(output)); } static inline bits320 force_inline fsquare_times(const bits320 in,uint64_t count) { limb output[10],input[10]; int32_t i; for (i=0; i<10; i++) input[i] = in.uints[i]; for (i=0; i Output: 2Q, Q+Q' // x2 z2: long form && x3 z3: long form // x z: short form, destroyed && xprime zprime: short form, destroyed // qmqp: short form, preserved static inline void force_inline fmonty(bits320 *x2, bits320 *z2, // output 2Q bits320 *x3, bits320 *z3, // output Q + Q' bits320 *x, bits320 *z, // input Q bits320 *xprime, bits320 *zprime, // input Q' const bits320 qmqp) // input Q - Q' { bits320 origx,origxprime,zzz,xx,zz,xxprime,zzprime; origx = *x; *x = fsum(*x,*z), fdifference_backwards(z->ulongs,origx.ulongs); // does x - z origxprime = *xprime; *xprime = fsum(*xprime,*zprime), fdifference_backwards(zprime->ulongs,origxprime.ulongs); xxprime = fmul(*xprime,*z), zzprime = fmul(*x,*zprime); origxprime = xxprime; xxprime = fsum(xxprime,zzprime), fdifference_backwards(zzprime.ulongs,origxprime.ulongs); *x3 = fsquare_times(xxprime,1), *z3 = fmul(fsquare_times(zzprime,1),qmqp); xx = fsquare_times(*x,1), zz = fsquare_times(*z,1); *x2 = fmul(xx,zz); fdifference_backwards(zz.ulongs,xx.ulongs); // does zz = xx - zz zzz = fscalar_product(zz,121665); *z2 = fmul(zz,fsum(zzz,xx)); } // ----------------------------------------------------------------------------- // Maybe swap the contents of two limb arrays (@a and @b), each @len elements // long. Perform the swap iff @swap is non-zero. // This function performs the swap without leaking any side-channel information. // ----------------------------------------------------------------------------- static inline void force_inline swap_conditional(bits320 *a,bits320 *b,uint64_t iswap) { int32_t i; const uint64_t swap = -iswap; for (i=0; i<5; ++i) { const uint64_t x = swap & (a->ulongs[i] ^ b->ulongs[i]); a->ulongs[i] ^= x, b->ulongs[i] ^= x; } } // Calculates nQ where Q is the x-coordinate of a point on the curve // resultx/resultz: the x coordinate of the resulting curve point (short form) // n: a little endian, 32-byte number // q: a point of the curve (short form) void cmult(bits320 *resultx,bits320 *resultz,bits256 secret,const bits320 q) { int32_t i,j; bits320 a,b,c,d,e,f,g,h,*t; bits320 Zero320bits,One320bits, *nqpqx = &a,*nqpqz = &b,*nqx = &c,*nqz = &d,*nqpqx2 = &e,*nqpqz2 = &f,*nqx2 = &g,*nqz2 = &h; memset(&Zero320bits,0,sizeof(Zero320bits)); memset(&One320bits,0,sizeof(One320bits)), One320bits.ulongs[0] = 1; a = d = e = g = Zero320bits, b = c = f = h = One320bits; *nqpqx = q; for (i=0; i<32; i++) { uint8_t byte = secret.bytes[31 - i]; for (j=0; j<8; j++) { const uint64_t bit = byte >> 7; swap_conditional(nqx,nqpqx,bit), swap_conditional(nqz,nqpqz,bit); fmonty(nqx2,nqz2,nqpqx2,nqpqz2,nqx,nqz,nqpqx,nqpqz,q); swap_conditional(nqx2,nqpqx2,bit), swap_conditional(nqz2,nqpqz2,bit); t = nqx, nqx = nqx2, nqx2 = t; t = nqz, nqz = nqz2, nqz2 = t; t = nqpqx, nqpqx = nqpqx2, nqpqx2 = t; t = nqpqz, nqpqz = nqpqz2, nqpqz2 = t; byte <<= 1; } } *resultx = *nqx, *resultz = *nqz; } // Shamelessly copied from donna's code that copied djb's code, changed a little inline bits320 force_inline crecip(const bits320 z) { bits320 a,t0,b,c; /* 2 */ a = fsquare_times(z, 1); // a = 2 /* 8 */ t0 = fsquare_times(a, 2); /* 9 */ b = fmul(t0, z); // b = 9 /* 11 */ a = fmul(b, a); // a = 11 /* 22 */ t0 = fsquare_times(a, 1); /* 2^5 - 2^0 = 31 */ b = fmul(t0, b); /* 2^10 - 2^5 */ t0 = fsquare_times(b, 5); /* 2^10 - 2^0 */ b = fmul(t0, b); /* 2^20 - 2^10 */ t0 = fsquare_times(b, 10); /* 2^20 - 2^0 */ c = fmul(t0, b); /* 2^40 - 2^20 */ t0 = fsquare_times(c, 20); /* 2^40 - 2^0 */ t0 = fmul(t0, c); /* 2^50 - 2^10 */ t0 = fsquare_times(t0, 10); /* 2^50 - 2^0 */ b = fmul(t0, b); /* 2^100 - 2^50 */ t0 = fsquare_times(b, 50); /* 2^100 - 2^0 */ c = fmul(t0, b); /* 2^200 - 2^100 */ t0 = fsquare_times(c, 100); /* 2^200 - 2^0 */ t0 = fmul(t0, c); /* 2^250 - 2^50 */ t0 = fsquare_times(t0, 50); /* 2^250 - 2^0 */ t0 = fmul(t0, b); /* 2^255 - 2^5 */ t0 = fsquare_times(t0, 5); /* 2^255 - 21 */ return(fmul(t0, a)); } void randombytes(unsigned char *x,long xlen); bits256 rand256(int32_t privkeyflag) { bits256 randval; OS_randombytes(randval.bytes,sizeof(randval)); if ( privkeyflag != 0 ) randval.bytes[0] &= 0xf8, randval.bytes[31] &= 0x7f, randval.bytes[31] |= 0x40; return(randval); } bits256 curve25519_basepoint9() { bits256 basepoint; memset(&basepoint,0,sizeof(basepoint)); basepoint.bytes[0] = 9; return(basepoint); } bits256 curve25519_keypair(bits256 *pubkeyp) { bits256 privkey; privkey = rand256(1); *pubkeyp = curve25519(privkey,curve25519_basepoint9()); //printf("[%llx %llx] ",privkey.txid,(*pubkeyp).txid); return(privkey); } // following is ported from libtom #define STORE32L(x, y) \ { (y)[3] = (uint8_t)(((x)>>24)&255); (y)[2] = (uint8_t)(((x)>>16)&255); \ (y)[1] = (uint8_t)(((x)>>8)&255); (y)[0] = (uint8_t)((x)&255); } #define LOAD32L(x, y) \ { x = (uint32_t)(((uint64_t)((y)[3] & 255)<<24) | \ ((uint32_t)((y)[2] & 255)<<16) | \ ((uint32_t)((y)[1] & 255)<<8) | \ ((uint32_t)((y)[0] & 255))); } #define STORE64L(x, y) \ { (y)[7] = (uint8_t)(((x)>>56)&255); (y)[6] = (uint8_t)(((x)>>48)&255); \ (y)[5] = (uint8_t)(((x)>>40)&255); (y)[4] = (uint8_t)(((x)>>32)&255); \ (y)[3] = (uint8_t)(((x)>>24)&255); (y)[2] = (uint8_t)(((x)>>16)&255); \ (y)[1] = (uint8_t)(((x)>>8)&255); (y)[0] = (uint8_t)((x)&255); } #define LOAD64L(x, y) \ { x = (((uint64_t)((y)[7] & 255))<<56)|(((uint64_t)((y)[6] & 255))<<48)| \ (((uint64_t)((y)[5] & 255))<<40)|(((uint64_t)((y)[4] & 255))<<32)| \ (((uint64_t)((y)[3] & 255))<<24)|(((uint64_t)((y)[2] & 255))<<16)| \ (((uint64_t)((y)[1] & 255))<<8)|(((uint64_t)((y)[0] & 255))); } #define STORE32H(x, y) \ { (y)[0] = (uint8_t)(((x)>>24)&255); (y)[1] = (uint8_t)(((x)>>16)&255); \ (y)[2] = (uint8_t)(((x)>>8)&255); (y)[3] = (uint8_t)((x)&255); } #define LOAD32H(x, y) \ { x = (uint32_t)(((uint64_t)((y)[0] & 255)<<24) | \ ((uint32_t)((y)[1] & 255)<<16) | \ ((uint32_t)((y)[2] & 255)<<8) | \ ((uint32_t)((y)[3] & 255))); } #define STORE64H(x, y) \ { (y)[0] = (uint8_t)(((x)>>56)&255); (y)[1] = (uint8_t)(((x)>>48)&255); \ (y)[2] = (uint8_t)(((x)>>40)&255); (y)[3] = (uint8_t)(((x)>>32)&255); \ (y)[4] = (uint8_t)(((x)>>24)&255); (y)[5] = (uint8_t)(((x)>>16)&255); \ (y)[6] = (uint8_t)(((x)>>8)&255); (y)[7] = (uint8_t)((x)&255); } #define LOAD64H(x, y) \ { x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \ (((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \ (((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \ (((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); } // Various logical functions #define RORc(x, y) ( ((((uint32_t)(x)&0xFFFFFFFFUL)>>(uint32_t)((y)&31)) | ((uint32_t)(x)<<(uint32_t)(32-((y)&31)))) & 0xFFFFFFFFUL) #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) RORc((x),(n)) #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) #define MIN(x, y) ( ((x)<(y))?(x):(y) ) static inline int32_t sha256_vcompress(struct sha256_vstate * md,uint8_t *buf) { uint32_t S[8],W[64],t0,t1,i; for (i=0; i<8; i++) // copy state into S S[i] = md->state[i]; for (i=0; i<16; i++) // copy the state into 512-bits into W[0..15] LOAD32H(W[i],buf + (4*i)); for (i=16; i<64; i++) // fill W[16..63] W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; #define RND(a,b,c,d,e,f,g,h,i,ki) \ t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2); #undef RND for (i=0; i<8; i++) // feedback md->state[i] = md->state[i] + S[i]; return(0); } #undef RORc #undef Ch #undef Maj #undef S #undef R #undef Sigma0 #undef Sigma1 #undef Gamma0 #undef Gamma1 static inline void sha256_vinit(struct sha256_vstate * md) { md->curlen = 0; md->length = 0; md->state[0] = 0x6A09E667UL; md->state[1] = 0xBB67AE85UL; md->state[2] = 0x3C6EF372UL; md->state[3] = 0xA54FF53AUL; md->state[4] = 0x510E527FUL; md->state[5] = 0x9B05688CUL; md->state[6] = 0x1F83D9ABUL; md->state[7] = 0x5BE0CD19UL; } static inline int32_t sha256_vprocess(struct sha256_vstate *md,const uint8_t *in,uint64_t inlen) { uint64_t n; int32_t err; if ( md->curlen > sizeof(md->buf) ) return(-1); while ( inlen > 0 ) { if ( md->curlen == 0 && inlen >= 64 ) { if ( (err= sha256_vcompress(md,(uint8_t *)in)) != 0 ) return(err); md->length += 64 * 8, in += 64, inlen -= 64; } else { n = MIN(inlen,64 - md->curlen); memcpy(md->buf + md->curlen,in,(size_t)n); md->curlen += n, in += n, inlen -= n; if ( md->curlen == 64 ) { if ( (err= sha256_vcompress(md,md->buf)) != 0 ) return(err); md->length += 8*64; md->curlen = 0; } } } return(0); } static inline int32_t sha256_vdone(struct sha256_vstate *md,uint8_t *out) { int32_t i; if ( md->curlen >= sizeof(md->buf) ) return(-1); md->length += md->curlen * 8; // increase the length of the message md->buf[md->curlen++] = (uint8_t)0x80; // append the '1' bit // if len > 56 bytes we append zeros then compress. Then we can fall back to padding zeros and length encoding like normal. if ( md->curlen > 56 ) { while ( md->curlen < 64 ) md->buf[md->curlen++] = (uint8_t)0; sha256_vcompress(md,md->buf); md->curlen = 0; } while ( md->curlen < 56 ) // pad upto 56 bytes of zeroes md->buf[md->curlen++] = (uint8_t)0; STORE64H(md->length,md->buf+56); // store length sha256_vcompress(md,md->buf); for (i=0; i<8; i++) // copy output STORE32H(md->state[i],out+(4*i)); return(0); } int32_t init_hexbytes_noT(char *hexbytes,uint8_t *message,long len); void vcalc_sha256(char hashstr[(256 >> 3) * 2 + 1],uint8_t hash[256 >> 3],uint8_t *src,int32_t len) { struct sha256_vstate md; sha256_vinit(&md); sha256_vprocess(&md,src,len); sha256_vdone(&md,hash); if ( hashstr != 0 ) init_hexbytes_noT(hashstr,hash,256 >> 3); } void vcalc_sha256cat(uint8_t hash[256 >> 3],uint8_t *src,int32_t len,uint8_t *src2,int32_t len2) { struct sha256_vstate md; sha256_vinit(&md); sha256_vprocess(&md,src,len); if ( src2 != 0 ) sha256_vprocess(&md,src2,len2); sha256_vdone(&md,hash); } void vupdate_sha256(uint8_t hash[256 >> 3],struct sha256_vstate *state,uint8_t *src,int32_t len) { struct sha256_vstate md; memset(&md,0,sizeof(md)); if ( src == 0 ) sha256_vinit(&md); else { md = *state; sha256_vprocess(&md,src,len); } *state = md; sha256_vdone(&md,hash); } // rmd160: the five basic functions F(), G() and H() #define F(x, y, z) ((x) ^ (y) ^ (z)) #define G(x, y, z) (((x) & (y)) | (~(x) & (z))) #define H(x, y, z) (((x) | ~(y)) ^ (z)) #define I(x, y, z) (((x) & (z)) | ((y) & ~(z))) #define J(x, y, z) ((x) ^ ((y) | ~(z))) #define ROLc(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) /* the ten basic operations FF() through III() */ #define FF(a, b, c, d, e, x, s) \ (a) += F((b), (c), (d)) + (x);\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); #define GG(a, b, c, d, e, x, s) \ (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); #define HH(a, b, c, d, e, x, s) \ (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); #define II(a, b, c, d, e, x, s) \ (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); #define JJ(a, b, c, d, e, x, s) \ (a) += J((b), (c), (d)) + (x) + 0xa953fd4eUL;\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); #define FFF(a, b, c, d, e, x, s) \ (a) += F((b), (c), (d)) + (x);\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); #define GGG(a, b, c, d, e, x, s) \ (a) += G((b), (c), (d)) + (x) + 0x7a6d76e9UL;\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); #define HHH(a, b, c, d, e, x, s) \ (a) += H((b), (c), (d)) + (x) + 0x6d703ef3UL;\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); #define III(a, b, c, d, e, x, s) \ (a) += I((b), (c), (d)) + (x) + 0x5c4dd124UL;\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); #define JJJ(a, b, c, d, e, x, s) \ (a) += J((b), (c), (d)) + (x) + 0x50a28be6UL;\ (a) = ROLc((a), (s)) + (e);\ (c) = ROLc((c), 10); static int32_t rmd160_vcompress(struct rmd160_vstate *md,uint8_t *buf) { uint32_t aa,bb,cc,dd,ee,aaa,bbb,ccc,ddd,eee,X[16]; int i; /* load words X */ for (i = 0; i < 16; i++){ LOAD32L(X[i], buf + (4 * i)); } /* load state */ aa = aaa = md->state[0]; bb = bbb = md->state[1]; cc = ccc = md->state[2]; dd = ddd = md->state[3]; ee = eee = md->state[4]; /* round 1 */ FF(aa, bb, cc, dd, ee, X[ 0], 11); FF(ee, aa, bb, cc, dd, X[ 1], 14); FF(dd, ee, aa, bb, cc, X[ 2], 15); FF(cc, dd, ee, aa, bb, X[ 3], 12); FF(bb, cc, dd, ee, aa, X[ 4], 5); FF(aa, bb, cc, dd, ee, X[ 5], 8); FF(ee, aa, bb, cc, dd, X[ 6], 7); FF(dd, ee, aa, bb, cc, X[ 7], 9); FF(cc, dd, ee, aa, bb, X[ 8], 11); FF(bb, cc, dd, ee, aa, X[ 9], 13); FF(aa, bb, cc, dd, ee, X[10], 14); FF(ee, aa, bb, cc, dd, X[11], 15); FF(dd, ee, aa, bb, cc, X[12], 6); FF(cc, dd, ee, aa, bb, X[13], 7); FF(bb, cc, dd, ee, aa, X[14], 9); FF(aa, bb, cc, dd, ee, X[15], 8); /* round 2 */ GG(ee, aa, bb, cc, dd, X[ 7], 7); GG(dd, ee, aa, bb, cc, X[ 4], 6); GG(cc, dd, ee, aa, bb, X[13], 8); GG(bb, cc, dd, ee, aa, X[ 1], 13); GG(aa, bb, cc, dd, ee, X[10], 11); GG(ee, aa, bb, cc, dd, X[ 6], 9); GG(dd, ee, aa, bb, cc, X[15], 7); GG(cc, dd, ee, aa, bb, X[ 3], 15); GG(bb, cc, dd, ee, aa, X[12], 7); GG(aa, bb, cc, dd, ee, X[ 0], 12); GG(ee, aa, bb, cc, dd, X[ 9], 15); GG(dd, ee, aa, bb, cc, X[ 5], 9); GG(cc, dd, ee, aa, bb, X[ 2], 11); GG(bb, cc, dd, ee, aa, X[14], 7); GG(aa, bb, cc, dd, ee, X[11], 13); GG(ee, aa, bb, cc, dd, X[ 8], 12); /* round 3 */ HH(dd, ee, aa, bb, cc, X[ 3], 11); HH(cc, dd, ee, aa, bb, X[10], 13); HH(bb, cc, dd, ee, aa, X[14], 6); HH(aa, bb, cc, dd, ee, X[ 4], 7); HH(ee, aa, bb, cc, dd, X[ 9], 14); HH(dd, ee, aa, bb, cc, X[15], 9); HH(cc, dd, ee, aa, bb, X[ 8], 13); HH(bb, cc, dd, ee, aa, X[ 1], 15); HH(aa, bb, cc, dd, ee, X[ 2], 14); HH(ee, aa, bb, cc, dd, X[ 7], 8); HH(dd, ee, aa, bb, cc, X[ 0], 13); HH(cc, dd, ee, aa, bb, X[ 6], 6); HH(bb, cc, dd, ee, aa, X[13], 5); HH(aa, bb, cc, dd, ee, X[11], 12); HH(ee, aa, bb, cc, dd, X[ 5], 7); HH(dd, ee, aa, bb, cc, X[12], 5); /* round 4 */ II(cc, dd, ee, aa, bb, X[ 1], 11); II(bb, cc, dd, ee, aa, X[ 9], 12); II(aa, bb, cc, dd, ee, X[11], 14); II(ee, aa, bb, cc, dd, X[10], 15); II(dd, ee, aa, bb, cc, X[ 0], 14); II(cc, dd, ee, aa, bb, X[ 8], 15); II(bb, cc, dd, ee, aa, X[12], 9); II(aa, bb, cc, dd, ee, X[ 4], 8); II(ee, aa, bb, cc, dd, X[13], 9); II(dd, ee, aa, bb, cc, X[ 3], 14); II(cc, dd, ee, aa, bb, X[ 7], 5); II(bb, cc, dd, ee, aa, X[15], 6); II(aa, bb, cc, dd, ee, X[14], 8); II(ee, aa, bb, cc, dd, X[ 5], 6); II(dd, ee, aa, bb, cc, X[ 6], 5); II(cc, dd, ee, aa, bb, X[ 2], 12); /* round 5 */ JJ(bb, cc, dd, ee, aa, X[ 4], 9); JJ(aa, bb, cc, dd, ee, X[ 0], 15); JJ(ee, aa, bb, cc, dd, X[ 5], 5); JJ(dd, ee, aa, bb, cc, X[ 9], 11); JJ(cc, dd, ee, aa, bb, X[ 7], 6); JJ(bb, cc, dd, ee, aa, X[12], 8); JJ(aa, bb, cc, dd, ee, X[ 2], 13); JJ(ee, aa, bb, cc, dd, X[10], 12); JJ(dd, ee, aa, bb, cc, X[14], 5); JJ(cc, dd, ee, aa, bb, X[ 1], 12); JJ(bb, cc, dd, ee, aa, X[ 3], 13); JJ(aa, bb, cc, dd, ee, X[ 8], 14); JJ(ee, aa, bb, cc, dd, X[11], 11); JJ(dd, ee, aa, bb, cc, X[ 6], 8); JJ(cc, dd, ee, aa, bb, X[15], 5); JJ(bb, cc, dd, ee, aa, X[13], 6); /* parallel round 1 */ JJJ(aaa, bbb, ccc, ddd, eee, X[ 5], 8); JJJ(eee, aaa, bbb, ccc, ddd, X[14], 9); JJJ(ddd, eee, aaa, bbb, ccc, X[ 7], 9); JJJ(ccc, ddd, eee, aaa, bbb, X[ 0], 11); JJJ(bbb, ccc, ddd, eee, aaa, X[ 9], 13); JJJ(aaa, bbb, ccc, ddd, eee, X[ 2], 15); JJJ(eee, aaa, bbb, ccc, ddd, X[11], 15); JJJ(ddd, eee, aaa, bbb, ccc, X[ 4], 5); JJJ(ccc, ddd, eee, aaa, bbb, X[13], 7); JJJ(bbb, ccc, ddd, eee, aaa, X[ 6], 7); JJJ(aaa, bbb, ccc, ddd, eee, X[15], 8); JJJ(eee, aaa, bbb, ccc, ddd, X[ 8], 11); JJJ(ddd, eee, aaa, bbb, ccc, X[ 1], 14); JJJ(ccc, ddd, eee, aaa, bbb, X[10], 14); JJJ(bbb, ccc, ddd, eee, aaa, X[ 3], 12); JJJ(aaa, bbb, ccc, ddd, eee, X[12], 6); /* parallel round 2 */ III(eee, aaa, bbb, ccc, ddd, X[ 6], 9); III(ddd, eee, aaa, bbb, ccc, X[11], 13); III(ccc, ddd, eee, aaa, bbb, X[ 3], 15); III(bbb, ccc, ddd, eee, aaa, X[ 7], 7); III(aaa, bbb, ccc, ddd, eee, X[ 0], 12); III(eee, aaa, bbb, ccc, ddd, X[13], 8); III(ddd, eee, aaa, bbb, ccc, X[ 5], 9); III(ccc, ddd, eee, aaa, bbb, X[10], 11); III(bbb, ccc, ddd, eee, aaa, X[14], 7); III(aaa, bbb, ccc, ddd, eee, X[15], 7); III(eee, aaa, bbb, ccc, ddd, X[ 8], 12); III(ddd, eee, aaa, bbb, ccc, X[12], 7); III(ccc, ddd, eee, aaa, bbb, X[ 4], 6); III(bbb, ccc, ddd, eee, aaa, X[ 9], 15); III(aaa, bbb, ccc, ddd, eee, X[ 1], 13); III(eee, aaa, bbb, ccc, ddd, X[ 2], 11); /* parallel round 3 */ HHH(ddd, eee, aaa, bbb, ccc, X[15], 9); HHH(ccc, ddd, eee, aaa, bbb, X[ 5], 7); HHH(bbb, ccc, ddd, eee, aaa, X[ 1], 15); HHH(aaa, bbb, ccc, ddd, eee, X[ 3], 11); HHH(eee, aaa, bbb, ccc, ddd, X[ 7], 8); HHH(ddd, eee, aaa, bbb, ccc, X[14], 6); HHH(ccc, ddd, eee, aaa, bbb, X[ 6], 6); HHH(bbb, ccc, ddd, eee, aaa, X[ 9], 14); HHH(aaa, bbb, ccc, ddd, eee, X[11], 12); HHH(eee, aaa, bbb, ccc, ddd, X[ 8], 13); HHH(ddd, eee, aaa, bbb, ccc, X[12], 5); HHH(ccc, ddd, eee, aaa, bbb, X[ 2], 14); HHH(bbb, ccc, ddd, eee, aaa, X[10], 13); HHH(aaa, bbb, ccc, ddd, eee, X[ 0], 13); HHH(eee, aaa, bbb, ccc, ddd, X[ 4], 7); HHH(ddd, eee, aaa, bbb, ccc, X[13], 5); /* parallel round 4 */ GGG(ccc, ddd, eee, aaa, bbb, X[ 8], 15); GGG(bbb, ccc, ddd, eee, aaa, X[ 6], 5); GGG(aaa, bbb, ccc, ddd, eee, X[ 4], 8); GGG(eee, aaa, bbb, ccc, ddd, X[ 1], 11); GGG(ddd, eee, aaa, bbb, ccc, X[ 3], 14); GGG(ccc, ddd, eee, aaa, bbb, X[11], 14); GGG(bbb, ccc, ddd, eee, aaa, X[15], 6); GGG(aaa, bbb, ccc, ddd, eee, X[ 0], 14); GGG(eee, aaa, bbb, ccc, ddd, X[ 5], 6); GGG(ddd, eee, aaa, bbb, ccc, X[12], 9); GGG(ccc, ddd, eee, aaa, bbb, X[ 2], 12); GGG(bbb, ccc, ddd, eee, aaa, X[13], 9); GGG(aaa, bbb, ccc, ddd, eee, X[ 9], 12); GGG(eee, aaa, bbb, ccc, ddd, X[ 7], 5); GGG(ddd, eee, aaa, bbb, ccc, X[10], 15); GGG(ccc, ddd, eee, aaa, bbb, X[14], 8); /* parallel round 5 */ FFF(bbb, ccc, ddd, eee, aaa, X[12] , 8); FFF(aaa, bbb, ccc, ddd, eee, X[15] , 5); FFF(eee, aaa, bbb, ccc, ddd, X[10] , 12); FFF(ddd, eee, aaa, bbb, ccc, X[ 4] , 9); FFF(ccc, ddd, eee, aaa, bbb, X[ 1] , 12); FFF(bbb, ccc, ddd, eee, aaa, X[ 5] , 5); FFF(aaa, bbb, ccc, ddd, eee, X[ 8] , 14); FFF(eee, aaa, bbb, ccc, ddd, X[ 7] , 6); FFF(ddd, eee, aaa, bbb, ccc, X[ 6] , 8); FFF(ccc, ddd, eee, aaa, bbb, X[ 2] , 13); FFF(bbb, ccc, ddd, eee, aaa, X[13] , 6); FFF(aaa, bbb, ccc, ddd, eee, X[14] , 5); FFF(eee, aaa, bbb, ccc, ddd, X[ 0] , 15); FFF(ddd, eee, aaa, bbb, ccc, X[ 3] , 13); FFF(ccc, ddd, eee, aaa, bbb, X[ 9] , 11); FFF(bbb, ccc, ddd, eee, aaa, X[11] , 11); /* combine results */ ddd += cc + md->state[1]; /* final result for md->state[0] */ md->state[1] = md->state[2] + dd + eee; md->state[2] = md->state[3] + ee + aaa; md->state[3] = md->state[4] + aa + bbb; md->state[4] = md->state[0] + bb + ccc; md->state[0] = ddd; return 0; } /** Initialize the hash state @param md The hash state you wish to initialize @return 0 if successful */ int rmd160_vinit(struct rmd160_vstate * md) { md->state[0] = 0x67452301UL; md->state[1] = 0xefcdab89UL; md->state[2] = 0x98badcfeUL; md->state[3] = 0x10325476UL; md->state[4] = 0xc3d2e1f0UL; md->curlen = 0; md->length = 0; return 0; } #define HASH_PROCESS(func_name, compress_name, state_var, block_size) \ int func_name (struct rmd160_vstate * md, const unsigned char *in, unsigned long inlen) \ { \ unsigned long n; \ int err; \ if (md->curlen > sizeof(md->buf)) { \ return -1; \ } \ while (inlen > 0) { \ if (md->curlen == 0 && inlen >= block_size) { \ if ((err = compress_name (md, (unsigned char *)in)) != 0) { \ return err; \ } \ md->length += block_size * 8; \ in += block_size; \ inlen -= block_size; \ } else { \ n = MIN(inlen, (block_size - md->curlen)); \ memcpy(md->buf + md->curlen, in, (size_t)n); \ md->curlen += n; \ in += n; \ inlen -= n; \ if (md->curlen == block_size) { \ if ((err = compress_name (md, md->buf)) != 0) { \ return err; \ } \ md->length += 8*block_size; \ md->curlen = 0; \ } \ } \ } \ return 0; \ } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return 0 if successful */ HASH_PROCESS(rmd160_vprocess, rmd160_vcompress, rmd160, 64) /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (20 bytes) @return 0 if successful */ int rmd160_vdone(struct rmd160_vstate * md, unsigned char *out) { int i; if (md->curlen >= sizeof(md->buf)) { return -1; } /* increase the length of the message */ md->length += md->curlen * 8; /* append the '1' bit */ md->buf[md->curlen++] = (unsigned char)0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->curlen > 56) { while (md->curlen < 64) { md->buf[md->curlen++] = (unsigned char)0; } rmd160_vcompress(md, md->buf); md->curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->curlen < 56) { md->buf[md->curlen++] = (unsigned char)0; } /* store length */ STORE64L(md->length, md->buf+56); rmd160_vcompress(md, md->buf); /* copy output */ for (i = 0; i < 5; i++) { STORE32L(md->state[i], out+(4*i)); } return 0; } void calc_rmd160(char hexstr[41],uint8_t buf[20],uint8_t *msg,int32_t len) { struct rmd160_vstate md; rmd160_vinit(&md); rmd160_vprocess(&md,msg,len); rmd160_vdone(&md, buf); if ( hexstr != 0 ) init_hexbytes_noT(hexstr,buf,20); } #ifdef ENABLE_RMDTEST int rmd160_test(void) { static const struct { char *msg; unsigned char md[20]; } tests[] = { { "", { 0x9c, 0x11, 0x85, 0xa5, 0xc5, 0xe9, 0xfc, 0x54, 0x61, 0x28, 0x08, 0x97, 0x7e, 0xe8, 0xf5, 0x48, 0xb2, 0x25, 0x8d, 0x31 } }, { "a", { 0x0b, 0xdc, 0x9d, 0x2d, 0x25, 0x6b, 0x3e, 0xe9, 0xda, 0xae, 0x34, 0x7b, 0xe6, 0xf4, 0xdc, 0x83, 0x5a, 0x46, 0x7f, 0xfe } }, { "abc", { 0x8e, 0xb2, 0x08, 0xf7, 0xe0, 0x5d, 0x98, 0x7a, 0x9b, 0x04, 0x4a, 0x8e, 0x98, 0xc6, 0xb0, 0x87, 0xf1, 0x5a, 0x0b, 0xfc } }, { "message digest", { 0x5d, 0x06, 0x89, 0xef, 0x49, 0xd2, 0xfa, 0xe5, 0x72, 0xb8, 0x81, 0xb1, 0x23, 0xa8, 0x5f, 0xfa, 0x21, 0x59, 0x5f, 0x36 } }, { "abcdefghijklmnopqrstuvwxyz", { 0xf7, 0x1c, 0x27, 0x10, 0x9c, 0x69, 0x2c, 0x1b, 0x56, 0xbb, 0xdc, 0xeb, 0x5b, 0x9d, 0x28, 0x65, 0xb3, 0x70, 0x8d, 0xbc } }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", { 0x12, 0xa0, 0x53, 0x38, 0x4a, 0x9c, 0x0c, 0x88, 0xe4, 0x05, 0xa0, 0x6c, 0x27, 0xdc, 0xf4, 0x9a, 0xda, 0x62, 0xeb, 0x2b } } }; int x; unsigned char buf[20]; char hexstr[41]; for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) { calc_rmd160(hexstr,buf,(unsigned char *)tests[x].msg,(int32_t) strlen(tests[x].msg)); if (memcmp(buf, tests[x].md, 20) != 0) { printf("Failed test %d\n", x); return -1; } else printf("rmd160(%s) -> (%s)\n",tests[x].msg,hexstr); } return 0; } #endif #undef FF #undef GG #undef HH #undef II #undef FFF #undef GGG #undef HHH #undef III #undef F #undef G #undef H #undef I #undef J #undef ROLc static const uint32_t crc32_tab[] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; uint32_t calc_crc32(uint32_t crc,const void *buf,size_t size) { const uint8_t *p; p = (const uint8_t *)buf; crc = crc ^ ~0U; while (size--) crc = crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); return crc ^ ~0U; } bits256 curve25519_shared(bits256 privkey,bits256 otherpub) { bits256 shared,hash; shared = curve25519(privkey,otherpub); vcalc_sha256(0,hash.bytes,shared.bytes,sizeof(shared)); //printf("priv.%llx pub.%llx shared.%llx -> hash.%llx\n",privkey.txid,pubkey.txid,shared.txid,hash.txid); //hash.bytes[0] &= 0xf8, hash.bytes[31] &= 0x7f, hash.bytes[31] |= 64; return(hash); } int32_t curve25519_donna(uint8_t *mypublic,const uint8_t *secret,const uint8_t *basepoint); /*{ bits256 val,p,bp; memcpy(p.bytes,secret,sizeof(p)); memcpy(bp.bytes,basepoint,sizeof(bp)); val = curve25519(p,bp); memcpy(mypublic,val.bytes,sizeof(val)); return(0); }*/ uint64_t conv_NXTpassword(unsigned char *mysecret,unsigned char *mypublic,uint8_t *pass,int32_t passlen) { static uint8_t basepoint[32] = {9}; uint64_t addr; uint8_t hash[32]; if ( pass != 0 && passlen != 0 ) vcalc_sha256(0,mysecret,pass,passlen); mysecret[0] &= 248, mysecret[31] &= 127, mysecret[31] |= 64; curve25519_donna(mypublic,mysecret,basepoint); vcalc_sha256(0,hash,mypublic,32); memcpy(&addr,hash,sizeof(addr)); return(addr); } #undef force_inline