/********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_ECMULT_IMPL_H_ #define _SECP256K1_ECMULT_IMPL_H_ #include "group.h" #include "scalar.h" #include "ecmult.h" /* optimal for 128-bit and 256-bit exponents. */ #define WINDOW_A 5 /** larger numbers may result in slightly better performance, at the cost of exponentially larger precomputed tables. */ #ifdef USE_ENDOMORPHISM /** Two tables for window size 15: 1.375 MiB. */ #define WINDOW_G 15 #else /** One table for window size 16: 1.375 MiB. */ #define WINDOW_G 16 #endif /** The number of entries a table with precomputed multiples needs to have. */ #define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) /** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain * the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will * contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z. * Prej's Z values are undefined, except for the last value. */ static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej_t *prej, secp256k1_fe_t *zr, const secp256k1_gej_t *a) { secp256k1_gej_t d; secp256k1_ge_t a_ge, d_ge; int i; VERIFY_CHECK(!a->infinity); secp256k1_gej_double_var(&d, a, NULL); /* * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate * of 'd', and scale the 1P starting value's x/y coordinates without changing its z. */ d_ge.x = d.x; d_ge.y = d.y; d_ge.infinity = 0; secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z); prej[0].x = a_ge.x; prej[0].y = a_ge.y; prej[0].z = a->z; prej[0].infinity = 0; zr[0] = d.z; for (i = 1; i < n; i++) { secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]); } /* * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only * the final point's z coordinate is actually used though, so just update that. */ secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z); } /** Fill a table 'pre' with precomputed odd multiples of a. * * There are two versions of this function: * - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its * resulting point set to a single constant Z denominator, stores the X and Y * coordinates as ge_storage points in pre, and stores the global Z in rz. * It only operates on tables sized for WINDOW_A wnaf multiples. * - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its * resulting point set to actually affine points, and stores those in pre. * It operates on tables of any size, but uses heap-allocated temporaries. * * To compute a*P + b*G, we compute a table for P using the first function, * and for G using the second (which requires an inverse, but it only needs to * happen once). */ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge_t *pre, secp256k1_fe_t *globalz, const secp256k1_gej_t *a) { secp256k1_gej_t prej[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_fe_t zr[ECMULT_TABLE_SIZE(WINDOW_A)]; /* Compute the odd multiples in Jacobian form. */ secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a); /* Bring them to the same Z denominator. */ secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr); } static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage_t *pre, const secp256k1_gej_t *a, const callback_t *cb) { secp256k1_gej_t *prej = (secp256k1_gej_t*)checked_malloc(cb, sizeof(secp256k1_gej_t) * n); secp256k1_ge_t *prea = (secp256k1_ge_t*)checked_malloc(cb, sizeof(secp256k1_ge_t) * n); secp256k1_fe_t *zr = (secp256k1_fe_t*)checked_malloc(cb, sizeof(secp256k1_fe_t) * n); int i; /* Compute the odd multiples in Jacobian form. */ secp256k1_ecmult_odd_multiples_table(n, prej, zr, a); /* Convert them in batch to affine coordinates. */ secp256k1_ge_set_table_gej_var(n, prea, prej, zr); /* Convert them to compact storage form. */ for (i = 0; i < n; i++) { secp256k1_ge_to_storage(&pre[i], &prea[i]); } free(prea); free(prej); free(zr); } /** The following two macro retrieves a particular odd multiple from a table * of precomputed multiples. */ #define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \ VERIFY_CHECK(((n) & 1) == 1); \ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ if ((n) > 0) { \ *(r) = (pre)[((n)-1)/2]; \ } else { \ secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \ } \ } while(0) #define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \ VERIFY_CHECK(((n) & 1) == 1); \ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ if ((n) > 0) { \ secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \ } else { \ secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \ secp256k1_ge_neg((r), (r)); \ } \ } while(0) static void secp256k1_ecmult_context_init(secp256k1_ecmult_context_t *ctx) { ctx->pre_g = NULL; #ifdef USE_ENDOMORPHISM ctx->pre_g_128 = NULL; #endif } static void secp256k1_ecmult_context_build(secp256k1_ecmult_context_t *ctx, const callback_t *cb) { secp256k1_gej_t gj; if (ctx->pre_g != NULL) { return; } /* get the generator */ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); ctx->pre_g = (secp256k1_ge_storage_t (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); /* precompute the tables with odd multiples */ secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb); #ifdef USE_ENDOMORPHISM { secp256k1_gej_t g_128j; int i; ctx->pre_g_128 = (secp256k1_ge_storage_t (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); /* calculate 2^128*generator */ g_128j = gj; for (i = 0; i < 128; i++) { secp256k1_gej_double_var(&g_128j, &g_128j, NULL); } secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb); } #endif } static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context_t *dst, const secp256k1_ecmult_context_t *src, const callback_t *cb) { if (src->pre_g == NULL) { dst->pre_g = NULL; } else { size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); dst->pre_g = (secp256k1_ge_storage_t (*)[])checked_malloc(cb, size); memcpy(dst->pre_g, src->pre_g, size); } #ifdef USE_ENDOMORPHISM if (src->pre_g_128 == NULL) { dst->pre_g_128 = NULL; } else { size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); dst->pre_g_128 = (secp256k1_ge_storage_t (*)[])checked_malloc(cb, size); memcpy(dst->pre_g_128, src->pre_g_128, size); } #endif } static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context_t *ctx) { return ctx->pre_g != NULL; } static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context_t *ctx) { free(ctx->pre_g); #ifdef USE_ENDOMORPHISM free(ctx->pre_g_128); #endif secp256k1_ecmult_context_init(ctx); } /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), * with the following guarantees: * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) * - two non-zero entries in wnaf are separated by at least w-1 zeroes. * - the number of set values in wnaf is returned. This number is at most 256, and at most one more * than the number of bits in the (absolute value) of the input. */ static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar_t *a, int w) { secp256k1_scalar_t s = *a; int last_set_bit = -1; int bit = 0; int sign = 1; int carry = 0; VERIFY_CHECK(wnaf != NULL); VERIFY_CHECK(0 <= len && len <= 256); VERIFY_CHECK(a != NULL); VERIFY_CHECK(2 <= w && w <= 31); memset(wnaf, 0, len * sizeof(wnaf[0])); if (secp256k1_scalar_get_bits(&s, 255, 1)) { secp256k1_scalar_negate(&s, &s); sign = -1; } while (bit < len) { int now; int word; if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) { bit++; continue; } now = w; if (now > len - bit) { now = len - bit; } word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry; carry = (word >> (w-1)) & 1; word -= carry << w; wnaf[bit] = sign * word; last_set_bit = bit; bit += now; } #ifdef VERIFY CHECK(carry == 0); while (bit < 256) { CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0); } #endif return last_set_bit + 1; } static void secp256k1_ecmult(const secp256k1_ecmult_context_t *ctx, secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_scalar_t *na, const secp256k1_scalar_t *ng) { secp256k1_ge_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_ge_t tmpa; secp256k1_fe_t Z; #ifdef USE_ENDOMORPHISM secp256k1_ge_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_scalar_t na_1, na_lam; /* Splitted G factors. */ secp256k1_scalar_t ng_1, ng_128; int wnaf_na_1[130]; int wnaf_na_lam[130]; int bits_na_1; int bits_na_lam; int wnaf_ng_1[129]; int bits_ng_1; int wnaf_ng_128[129]; int bits_ng_128; #else int wnaf_na[256]; int bits_na; int wnaf_ng[256]; int bits_ng; #endif int i; int bits; #ifdef USE_ENDOMORPHISM /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ secp256k1_scalar_split_lambda(&na_1, &na_lam, na); /* build wnaf representation for na_1 and na_lam. */ bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A); bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A); VERIFY_CHECK(bits_na_1 <= 130); VERIFY_CHECK(bits_na_lam <= 130); bits = bits_na_1; if (bits_na_lam > bits) { bits = bits_na_lam; } #else /* build wnaf representation for na. */ bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A); bits = bits_na; #endif /* Calculate odd multiples of a. * All multiples are brought to the same Z 'denominator', which is stored * in Z. Due to secp256k1' isomorphism we can do all operations pretending * that the Z coordinate was 1, use affine addition formulae, and correct * the Z coordinate of the result once at the end. * The exception is the precomputed G table points, which are actually * affine. Compared to the base used for other points, they have a Z ratio * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same * isomorphism to efficiently add with a known Z inverse. */ secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a); #ifdef USE_ENDOMORPHISM for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); } /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */ secp256k1_scalar_split_128(&ng_1, &ng_128, ng); /* Build wnaf representation for ng_1 and ng_128 */ bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G); bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G); if (bits_ng_1 > bits) { bits = bits_ng_1; } if (bits_ng_128 > bits) { bits = bits_ng_128; } #else bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G); if (bits_ng > bits) { bits = bits_ng; } #endif secp256k1_gej_set_infinity(r); for (i = bits - 1; i >= 0; i--) { int n; secp256k1_gej_double_var(r, r, NULL); #ifdef USE_ENDOMORPHISM if (i < bits_na_1 && (n = wnaf_na_1[i])) { ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); } if (i < bits_na_lam && (n = wnaf_na_lam[i])) { ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); } if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); } if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G); secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); } #else if (i < bits_na && (n = wnaf_na[i])) { ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); } if (i < bits_ng && (n = wnaf_ng[i])) { ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); } #endif } if (!r->infinity) { secp256k1_fe_mul(&r->z, &r->z, &Z); } } #endif