/*
 * Copyright 2009 Colin Percival, 2011 ArtForz, 2011-2014 pooler
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * This file was originally written by Colin Percival as part of the Tarsnap
 * online backup system.
 */

#include <stdlib.h>
#include <string.h>
#include <inttypes.h>

static const uint32_t keypad[12] = {
	0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280
};
static const uint32_t innerpad[11] = {
	0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0
};
static const uint32_t outerpad[8] = {
	0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300
};
static const uint32_t finalblk[16] = {
	0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620
};

static const uint32_t sha256_h[8] = {
	0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
	0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};

static const uint32_t sha256_k[64] = {
	0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
	0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
	0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
	0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
	0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
	0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
	0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
	0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
	0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
	0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
	0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
	0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
	0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
	0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
	0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
	0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

static inline void scrypt_sha256_init(uint32_t *state)
{
	memcpy(state, sha256_h, 32);
}

/* Elementary functions used by SHA256 */
#define Ch(x, y, z)     ((x & (y ^ z)) ^ z)
#define Maj(x, y, z)    ((x & (y | z)) | (y & z))
#define ROTR(x, n)      ((x >> n) | (x << (32 - n)))
#define S0(x)           (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x)           (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x)           (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
#define s1(x)           (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))

/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
do { \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h  = t0 + t1; \
} while (0)

/* Adjusted round function for rotating state */
#define RNDr(S, W, i) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + sha256_k[i])

#define swab32(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))

static inline void scrypt_sha256_transform(uint32_t *state, const uint32_t *block, int swap)
{
	uint32_t W[64];
	uint32_t S[8];
	uint32_t t0, t1;
	int i;
    
	/* 1. Prepare message schedule W. */
	if (swap) {
		for (i = 0; i < 16; i++)
			W[i] = swab32(block[i]);
	} else
		memcpy(W, block, 64);
	for (i = 16; i < 64; i += 2) {
		W[i]   = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
		W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
	}
    
	/* 2. Initialize working variables. */
	memcpy(S, state, 32);
    
	/* 3. Mix. */
	RNDr(S, W,  0);
	RNDr(S, W,  1);
	RNDr(S, W,  2);
	RNDr(S, W,  3);
	RNDr(S, W,  4);
	RNDr(S, W,  5);
	RNDr(S, W,  6);
	RNDr(S, W,  7);
	RNDr(S, W,  8);
	RNDr(S, W,  9);
	RNDr(S, W, 10);
	RNDr(S, W, 11);
	RNDr(S, W, 12);
	RNDr(S, W, 13);
	RNDr(S, W, 14);
	RNDr(S, W, 15);
	RNDr(S, W, 16);
	RNDr(S, W, 17);
	RNDr(S, W, 18);
	RNDr(S, W, 19);
	RNDr(S, W, 20);
	RNDr(S, W, 21);
	RNDr(S, W, 22);
	RNDr(S, W, 23);
	RNDr(S, W, 24);
	RNDr(S, W, 25);
	RNDr(S, W, 26);
	RNDr(S, W, 27);
	RNDr(S, W, 28);
	RNDr(S, W, 29);
	RNDr(S, W, 30);
	RNDr(S, W, 31);
	RNDr(S, W, 32);
	RNDr(S, W, 33);
	RNDr(S, W, 34);
	RNDr(S, W, 35);
	RNDr(S, W, 36);
	RNDr(S, W, 37);
	RNDr(S, W, 38);
	RNDr(S, W, 39);
	RNDr(S, W, 40);
	RNDr(S, W, 41);
	RNDr(S, W, 42);
	RNDr(S, W, 43);
	RNDr(S, W, 44);
	RNDr(S, W, 45);
	RNDr(S, W, 46);
	RNDr(S, W, 47);
	RNDr(S, W, 48);
	RNDr(S, W, 49);
	RNDr(S, W, 50);
	RNDr(S, W, 51);
	RNDr(S, W, 52);
	RNDr(S, W, 53);
	RNDr(S, W, 54);
	RNDr(S, W, 55);
	RNDr(S, W, 56);
	RNDr(S, W, 57);
	RNDr(S, W, 58);
	RNDr(S, W, 59);
	RNDr(S, W, 60);
	RNDr(S, W, 61);
	RNDr(S, W, 62);
	RNDr(S, W, 63);
    
	/* 4. Mix local working variables into global state */
	for (i = 0; i < 8; i++)
		state[i] += S[i];
}

static inline void HMAC_SHA256_80_init(const uint32_t *key,uint32_t *tstate, uint32_t *ostate)
{
	uint32_t ihash[8];
	uint32_t pad[16];
	int i;
    
	/* tstate is assumed to contain the midstate of key */
	memcpy(pad, key + 16, 16);
	memcpy(pad + 4, keypad, 48);
	scrypt_sha256_transform(tstate, pad, 0);
	memcpy(ihash, tstate, 32);
    
	scrypt_sha256_init(ostate);
	for (i = 0; i < 8; i++)
		pad[i] = ihash[i] ^ 0x5c5c5c5c;
	for (; i < 16; i++)
		pad[i] = 0x5c5c5c5c;
	scrypt_sha256_transform(ostate, pad, 0);
    
	scrypt_sha256_init(tstate);
	for (i = 0; i < 8; i++)
		pad[i] = ihash[i] ^ 0x36363636;
	for (; i < 16; i++)
		pad[i] = 0x36363636;
	scrypt_sha256_transform(tstate, pad, 0);
}

static inline void PBKDF2_SHA256_80_128(const uint32_t *tstate,const uint32_t *ostate, const uint32_t *salt, uint32_t *output)
{
	uint32_t istate[8], ostate2[8],ibuf[16], obuf[16]; int i, j;
	memcpy(istate, tstate, 32);
	scrypt_sha256_transform(istate, salt, 0);
	memcpy(ibuf, salt + 16, 16);
	memcpy(ibuf + 5, innerpad, 44);
	memcpy(obuf + 8, outerpad, 32);
	for (i = 0; i < 4; i++)
    {
		memcpy(obuf, istate, 32);
		ibuf[4] = i + 1;
		scrypt_sha256_transform(obuf, ibuf, 0);
		memcpy(ostate2, ostate, 32);
		scrypt_sha256_transform(ostate2, obuf, 0);
		for (j = 0; j < 8; j++)
			output[8 * i + j] = swab32(ostate2[j]);
	}
}

static inline void PBKDF2_SHA256_128_32(uint32_t *tstate, uint32_t *ostate,const uint32_t *salt, uint32_t *output)
{
	uint32_t buf[16]; int i;
	scrypt_sha256_transform(tstate, salt, 1);
	scrypt_sha256_transform(tstate, salt + 16, 1);
	scrypt_sha256_transform(tstate, finalblk, 0);
	memcpy(buf, tstate, 32);
	memcpy(buf + 8, outerpad, 32);
	scrypt_sha256_transform(ostate, buf, 0);
	for (i = 0; i < 8; i++)
		output[i] = swab32(ostate[i]);
}

static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16])
{
	uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
	int i;
    
	x00 = (B[ 0] ^= Bx[ 0]);
	x01 = (B[ 1] ^= Bx[ 1]);
	x02 = (B[ 2] ^= Bx[ 2]);
	x03 = (B[ 3] ^= Bx[ 3]);
	x04 = (B[ 4] ^= Bx[ 4]);
	x05 = (B[ 5] ^= Bx[ 5]);
	x06 = (B[ 6] ^= Bx[ 6]);
	x07 = (B[ 7] ^= Bx[ 7]);
	x08 = (B[ 8] ^= Bx[ 8]);
	x09 = (B[ 9] ^= Bx[ 9]);
	x10 = (B[10] ^= Bx[10]);
	x11 = (B[11] ^= Bx[11]);
	x12 = (B[12] ^= Bx[12]);
	x13 = (B[13] ^= Bx[13]);
	x14 = (B[14] ^= Bx[14]);
	x15 = (B[15] ^= Bx[15]);
	for (i = 0; i < 8; i += 2) {
#define R(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
		/* Operate on columns. */
		x04 ^= R(x00+x12, 7);	x09 ^= R(x05+x01, 7);
		x14 ^= R(x10+x06, 7);	x03 ^= R(x15+x11, 7);
		
		x08 ^= R(x04+x00, 9);	x13 ^= R(x09+x05, 9);
		x02 ^= R(x14+x10, 9);	x07 ^= R(x03+x15, 9);
		
		x12 ^= R(x08+x04,13);	x01 ^= R(x13+x09,13);
		x06 ^= R(x02+x14,13);	x11 ^= R(x07+x03,13);
		
		x00 ^= R(x12+x08,18);	x05 ^= R(x01+x13,18);
		x10 ^= R(x06+x02,18);	x15 ^= R(x11+x07,18);
		
		/* Operate on rows. */
		x01 ^= R(x00+x03, 7);	x06 ^= R(x05+x04, 7);
		x11 ^= R(x10+x09, 7);	x12 ^= R(x15+x14, 7);
		
		x02 ^= R(x01+x00, 9);	x07 ^= R(x06+x05, 9);
		x08 ^= R(x11+x10, 9);	x13 ^= R(x12+x15, 9);
		
		x03 ^= R(x02+x01,13);	x04 ^= R(x07+x06,13);
		x09 ^= R(x08+x11,13);	x14 ^= R(x13+x12,13);
		
		x00 ^= R(x03+x02,18);	x05 ^= R(x04+x07,18);
		x10 ^= R(x09+x08,18);	x15 ^= R(x14+x13,18);
#undef R
	}
	B[ 0] += x00;
	B[ 1] += x01;
	B[ 2] += x02;
	B[ 3] += x03;
	B[ 4] += x04;
	B[ 5] += x05;
	B[ 6] += x06;
	B[ 7] += x07;
	B[ 8] += x08;
	B[ 9] += x09;
	B[10] += x10;
	B[11] += x11;
	B[12] += x12;
	B[13] += x13;
	B[14] += x14;
	B[15] += x15;
}

static inline void scrypt_core(uint32_t *X, uint32_t *V, int N)
{
	uint32_t i, j, k;
	for (i = 0; i < N; i++)
    {
        //printf("core.%d V.%p X.%p\n",i,V,X);
		memcpy(&V[i * 32], X, 128);
		xor_salsa8(&X[0], &X[16]);
		xor_salsa8(&X[16], &X[0]);
	}
	for (i = 0; i < N; i++)
    {
		j = 32 * (X[16] & (N - 1));
		for (k = 0; k < 32; k++)
			X[k] ^= V[j + k];
		xor_salsa8(&X[0], &X[16]);
		xor_salsa8(&X[16], &X[0]);
	}
}

void scrypt_1024_1_1_256(const uint32_t *input,uint32_t *output,uint32_t *midstate,uint8_t *scratchpad, int N)
{
	uint32_t *V,tstate[8],ostate[8],X[32]
#ifndef WIN32
    __attribute__((aligned(128)))
#endif
    ;
    
	V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
	memcpy(tstate, midstate, 32);
	HMAC_SHA256_80_init(input, tstate, ostate);
	PBKDF2_SHA256_80_128(tstate, ostate, input, X);
	scrypt_core(X, V, N);
	PBKDF2_SHA256_128_32(tstate, ostate, X, output);
}

void calc_scrypthash(uint32_t *hash,void *data)
{
    uint8_t *scratchbuf; uint32_t midstate[8];
    memset(midstate,0,sizeof(midstate));
    memset(hash,0,32);
  	scrypt_sha256_init(midstate);
	scrypt_sha256_transform(midstate,(void *)data,0);
    scratchbuf = malloc(1024 * 128 + 64);
    scrypt_1024_1_1_256((void *)data,hash,midstate,scratchbuf,1024);
    free(scratchbuf);
}
//010000000000000000000000000000000000000000000000000000000000000000000000d9ced4ed1130f7b7faad9be25323ffafa33232a17c3edf6cfd97bee6bafbdd97b9aa8e4ef0ff0f1ecd513f7c
//010000000000000000000000000000000000000000000000000000000000000000000000d9ced4ed1130f7b7faad9be25323ffafa33232a17c3edf6cfd97bee6bafbdd97b9aa8e4ef0ff0f1ecd513f7c00