/**********************************************************************
 * Copyright (c) 2013-2015 Pieter Wuille                              *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#define SECP256K1_BUILD (1)

#include "secp256k1.h"

#include "util.h"
#include "num_impl.h"
#include "field_impl.h"
#include "scalar_impl.h"
#include "group_impl.h"
#include "ecmult_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_gen_impl.h"
#include "ecdsa_impl.h"
#include "eckey_impl.h"
#include "hash_impl.h"

#ifdef ENABLE_MODULE_RANGEPROOF
# include "modules/rangeproof/pedersen.h"
# include "modules/rangeproof/rangeproof.h"
#endif

#define ARG_CHECK(cond) do { \
    if (EXPECT(!(cond), 0)) { \
        ctx->illegal_callback.fn(#cond, ctx->illegal_callback.data); \
        return 0; \
    } \
} while(0)

static void default_illegal_callback_fn(const char* str, void* data) {
    (void)data;
    fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str);
    abort();
}

static const callback_t default_illegal_callback = {
    default_illegal_callback_fn,
    NULL
};

static void default_error_callback_fn(const char* str, void* data) {
    (void)data;
    fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
    abort();
}

static const callback_t default_error_callback = {
    default_error_callback_fn,
    NULL
};


struct secp256k1_context_struct {
    secp256k1_ecmult_context_t ecmult_ctx;
    secp256k1_ecmult_gen_context_t ecmult_gen_ctx;
#ifdef ENABLE_MODULE_RANGEPROOF
    secp256k1_pedersen_context_t pedersen_ctx;
    secp256k1_rangeproof_context_t rangeproof_ctx;
#endif
    callback_t illegal_callback;
    callback_t error_callback;
};

secp256k1_context_t* secp256k1_context_create(int flags) {
    secp256k1_context_t* ret = (secp256k1_context_t*)checked_malloc(&default_error_callback, sizeof(secp256k1_context_t));
    ret->illegal_callback = default_illegal_callback;
    ret->error_callback = default_error_callback;

    secp256k1_ecmult_context_init(&ret->ecmult_ctx);
    secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx);
#ifdef ENABLE_MODULE_RANGEPROOF
    secp256k1_pedersen_context_init(&ret->pedersen_ctx);
    secp256k1_rangeproof_context_init(&ret->rangeproof_ctx);
#endif

    if (flags & SECP256K1_CONTEXT_SIGN) {
        secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback);
    }
    if (flags & SECP256K1_CONTEXT_VERIFY) {
        secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback);
    }

    return ret;
}

secp256k1_context_t* secp256k1_context_clone(const secp256k1_context_t* ctx) {
    secp256k1_context_t* ret = (secp256k1_context_t*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context_t));
    ret->illegal_callback = ctx->illegal_callback;
    ret->error_callback = ctx->error_callback;
    secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback);
    secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback);
#ifdef ENABLE_MODULE_RANGEPROOF
    secp256k1_pedersen_context_clone(&ret->pedersen_ctx, &ctx->pedersen_ctx, &ctx->error_callback);
    secp256k1_rangeproof_context_clone(&ret->rangeproof_ctx, &ctx->rangeproof_ctx, &ctx->error_callback);
#endif
    return ret;
}

void secp256k1_context_destroy(secp256k1_context_t* ctx) {
    secp256k1_ecmult_context_clear(&ctx->ecmult_ctx);
    secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx);
#ifdef ENABLE_MODULE_RANGEPROOF
    secp256k1_pedersen_context_clear(&ctx->pedersen_ctx);
    secp256k1_rangeproof_context_clear(&ctx->rangeproof_ctx);
#endif

    free(ctx);
}

void secp256k1_context_set_illegal_callback(secp256k1_context_t* ctx, void (*fun)(const char* message, void* data), void* data) {
    ctx->illegal_callback.fn = fun;
    ctx->illegal_callback.data = data;
}

void secp256k1_context_set_error_callback(secp256k1_context_t* ctx, void (*fun)(const char* message, void* data), void* data) {
    ctx->error_callback.fn = fun;
    ctx->error_callback.data = data;
}

static int secp256k1_pubkey_load(const secp256k1_context_t* ctx, secp256k1_ge_t* ge, const secp256k1_pubkey_t* pubkey) {
    if (sizeof(secp256k1_ge_storage_t) == 64) {
        /* When the secp256k1_ge_storage_t type is exactly 64 byte, use its
         * representation inside secp256k1_pubkey_t, as conversion is very fast.
         * Note that secp256k1_pubkey_save must use the same representation. */
        secp256k1_ge_storage_t s;
        memcpy(&s, &pubkey->data[0], 64);
        secp256k1_ge_from_storage(ge, &s);
    } else {
        /* Otherwise, fall back to 32-byte big endian for X and Y. */
        secp256k1_fe_t x, y;
        secp256k1_fe_set_b32(&x, pubkey->data);
        secp256k1_fe_set_b32(&y, pubkey->data + 32);
        secp256k1_ge_set_xy(ge, &x, &y);
    }
    ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
    return 1;
}

static void secp256k1_pubkey_save(secp256k1_pubkey_t* pubkey, secp256k1_ge_t* ge) {
    if (sizeof(secp256k1_ge_storage_t) == 64) {
        secp256k1_ge_storage_t s;
        secp256k1_ge_to_storage(&s, ge);
        memcpy(&pubkey->data[0], &s, 64);
    } else {
        VERIFY_CHECK(!secp256k1_ge_is_infinity(ge));
        secp256k1_fe_normalize_var(&ge->x);
        secp256k1_fe_normalize_var(&ge->y);
        secp256k1_fe_get_b32(pubkey->data, &ge->x);
        secp256k1_fe_get_b32(pubkey->data + 32, &ge->y);
    }
}

int secp256k1_ec_pubkey_parse(const secp256k1_context_t* ctx, secp256k1_pubkey_t* pubkey, const unsigned char *input, int inputlen) {
    secp256k1_ge_t Q;

    (void)ctx;
    if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
        memset(pubkey, 0, sizeof(*pubkey));
        return 0;
    }
    secp256k1_pubkey_save(pubkey, &Q);
    secp256k1_ge_clear(&Q);
    return 1;
}

int secp256k1_ec_pubkey_serialize(const secp256k1_context_t* ctx, unsigned char *output, int *outputlen, const secp256k1_pubkey_t* pubkey, int compressed) {
    secp256k1_ge_t Q;

    (void)ctx;
    return (secp256k1_pubkey_load(ctx, &Q, pubkey) &&
            secp256k1_eckey_pubkey_serialize(&Q, output, outputlen, compressed));
}

static void secp256k1_ecdsa_signature_load(const secp256k1_context_t* ctx, secp256k1_scalar_t* r, secp256k1_scalar_t* s, int* recid, const secp256k1_ecdsa_signature_t* sig) {
    (void)ctx;
    if (sizeof(secp256k1_scalar_t) == 32) {
        /* When the secp256k1_scalar_t type is exactly 32 byte, use its
         * representation inside secp256k1_ecdsa_signature_t, as conversion is very fast.
         * Note that secp256k1_ecdsa_signature_save must use the same representation. */
        memcpy(r, &sig->data[0], 32);
        memcpy(s, &sig->data[32], 32);
    } else {
        secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
        secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
    }
    if (recid) {
        *recid = sig->data[64];
    }
}

static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature_t* sig, const secp256k1_scalar_t* r, const secp256k1_scalar_t* s, int recid) {
    if (sizeof(secp256k1_scalar_t) == 32) {
        memcpy(&sig->data[0], r, 32);
        memcpy(&sig->data[32], s, 32);
    } else {
        secp256k1_scalar_get_b32(&sig->data[0], r);
        secp256k1_scalar_get_b32(&sig->data[32], s);
    }
    sig->data[64] = recid;
}

int secp256k1_ecdsa_signature_parse_der(const secp256k1_context_t* ctx, secp256k1_ecdsa_signature_t* sig, const unsigned char *input, int inputlen) {
    secp256k1_scalar_t r, s;

    (void)ctx;
    ARG_CHECK(sig != NULL);
    ARG_CHECK(input != NULL);

    if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) {
        secp256k1_ecdsa_signature_save(sig, &r, &s, -1);
        return 1;
    } else {
        memset(sig, 0, sizeof(*sig));
        return 0;
    }
}

int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context_t* ctx, secp256k1_ecdsa_signature_t* sig, const unsigned char *input64, int recid) {
    secp256k1_scalar_t r, s;
    int ret = 1;
    int overflow = 0;

    (void)ctx;
    ARG_CHECK(sig != NULL);
    ARG_CHECK(input64 != NULL);

    secp256k1_scalar_set_b32(&r, &input64[0], &overflow);
    ret &= !overflow;
    secp256k1_scalar_set_b32(&s, &input64[32], &overflow);
    ret &= !overflow;
    ret &= (recid == -1 || (recid >= 0 && recid < 4));
    if (ret) {
        secp256k1_ecdsa_signature_save(sig, &r, &s, recid);
    } else {
        memset(sig, 0, sizeof(*sig));
    }
    return ret;
}

int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context_t* ctx, unsigned char *output, int *outputlen, const secp256k1_ecdsa_signature_t* sig) {
    secp256k1_scalar_t r, s;

    (void)ctx;
    ARG_CHECK(output != NULL);
    ARG_CHECK(outputlen != NULL);
    ARG_CHECK(sig != NULL);

    secp256k1_ecdsa_signature_load(ctx, &r, &s, NULL, sig);
    return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s);
}

int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context_t* ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_signature_t* sig) {
    secp256k1_scalar_t r, s;
    int rec;

    (void)ctx;
    ARG_CHECK(output64 != NULL);
    ARG_CHECK(sig != NULL);

    secp256k1_ecdsa_signature_load(ctx, &r, &s, &rec, sig);
    secp256k1_scalar_get_b32(&output64[0], &r);
    secp256k1_scalar_get_b32(&output64[32], &s);
    if (recid) {
        ARG_CHECK(rec >= 0 && rec < 4);
        *recid = rec;
    }
    return 1;
}

int secp256k1_ecdsa_verify(const secp256k1_context_t* ctx, const unsigned char *msg32, const secp256k1_ecdsa_signature_t *sig, const secp256k1_pubkey_t *pubkey) {
    secp256k1_ge_t q;
    secp256k1_scalar_t r, s;
    secp256k1_scalar_t m;
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
    ARG_CHECK(msg32 != NULL);
    ARG_CHECK(sig != NULL);
    ARG_CHECK(pubkey != NULL);

    secp256k1_scalar_set_b32(&m, msg32, NULL);
    secp256k1_ecdsa_signature_load(ctx, &r, &s, NULL, sig);
    return (secp256k1_pubkey_load(ctx, &q, pubkey) &&
            secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m));
}

static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, unsigned int counter, const void *data) {
   unsigned char keydata[112];
   int keylen = 64;
   secp256k1_rfc6979_hmac_sha256_t rng;
   unsigned int i;
   /* We feed a byte array to the PRNG as input, consisting of:
    * - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d.
    * - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data.
    * - optionally 16 extra bytes with the algorithm name (the extra data bytes
    *   are set to zeroes when not present, while the algorithm name is).
    */
   memcpy(keydata, key32, 32);
   memcpy(keydata + 32, msg32, 32);
   if (data != NULL) {
       memcpy(keydata + 64, data, 32);
       keylen = 96;
   }
   if (algo16 != NULL) {
       memset(keydata + keylen, 0, 96 - keylen);
       memcpy(keydata + 96, algo16, 16);
       keylen = 112;
   }
   secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, keylen);
   memset(keydata, 0, sizeof(keydata));
   for (i = 0; i <= counter; i++) {
       secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
   }
   secp256k1_rfc6979_hmac_sha256_finalize(&rng);
   return 1;
}

const secp256k1_nonce_function_t secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
const secp256k1_nonce_function_t secp256k1_nonce_function_default = nonce_function_rfc6979;

int secp256k1_ecdsa_sign(const secp256k1_context_t* ctx, const unsigned char *msg32, secp256k1_ecdsa_signature_t *signature, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata) {
    secp256k1_scalar_t r, s;
    secp256k1_scalar_t sec, non, msg;
    int recid;
    int ret = 0;
    int overflow = 0;
    unsigned int count = 0;
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
    ARG_CHECK(msg32 != NULL);
    ARG_CHECK(signature != NULL);
    ARG_CHECK(seckey != NULL);
    if (noncefp == NULL) {
        noncefp = secp256k1_nonce_function_default;
    }

    secp256k1_scalar_set_b32(&sec, seckey, &overflow);
    /* Fail if the secret key is invalid. */
    if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
        secp256k1_scalar_set_b32(&msg, msg32, NULL);
        while (1) {
            unsigned char nonce32[32];
            ret = noncefp(nonce32, msg32, seckey, NULL, count, noncedata);
            if (!ret) {
                break;
            }
            secp256k1_scalar_set_b32(&non, nonce32, &overflow);
            memset(nonce32, 0, 32);
            if (!secp256k1_scalar_is_zero(&non) && !overflow) {
                if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, &recid)) {
                    break;
                }
            }
            count++;
        }
        secp256k1_scalar_clear(&msg);
        secp256k1_scalar_clear(&non);
        secp256k1_scalar_clear(&sec);
    }
    if (ret) {
        secp256k1_ecdsa_signature_save(signature, &r, &s, recid);
    } else {
        memset(signature, 0, sizeof(*signature));
    }
    return ret;
}

int secp256k1_ecdsa_recover(const secp256k1_context_t* ctx, const unsigned char *msg32, const secp256k1_ecdsa_signature_t *signature, secp256k1_pubkey_t *pubkey) {
    secp256k1_ge_t q;
    secp256k1_scalar_t r, s;
    secp256k1_scalar_t m;
    int recid;
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
    ARG_CHECK(msg32 != NULL);
    ARG_CHECK(signature != NULL);
    ARG_CHECK(pubkey != NULL);

    secp256k1_ecdsa_signature_load(ctx, &r, &s, &recid, signature);
    ARG_CHECK(recid >= 0 && recid < 4);
    secp256k1_scalar_set_b32(&m, msg32, NULL);
    if (secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &r, &s, &q, &m, recid)) {
        secp256k1_pubkey_save(pubkey, &q);
        return 1;
    } else {
        memset(pubkey, 0, sizeof(*pubkey));
        return 0;
    }
}

int secp256k1_ec_seckey_verify(const secp256k1_context_t* ctx, const unsigned char *seckey) {
    secp256k1_scalar_t sec;
    int ret;
    int overflow;
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(seckey != NULL);
    (void)ctx;

    secp256k1_scalar_set_b32(&sec, seckey, &overflow);
    ret = !secp256k1_scalar_is_zero(&sec) && !overflow;
    secp256k1_scalar_clear(&sec);
    return ret;
}

int secp256k1_ec_pubkey_create(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubkey, const unsigned char *seckey) {
    secp256k1_gej_t pj;
    secp256k1_ge_t p;
    secp256k1_scalar_t sec;
    int overflow;
    int ret = 0;
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
    ARG_CHECK(pubkey != NULL);
    ARG_CHECK(seckey != NULL);

    secp256k1_scalar_set_b32(&sec, seckey, &overflow);
    ret = !overflow & !secp256k1_scalar_is_zero(&sec);
    secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
    secp256k1_ge_set_gej(&p, &pj);
    secp256k1_pubkey_save(pubkey, &p);
    secp256k1_scalar_clear(&sec);
    if (!ret) {
        memset(pubkey, 0, sizeof(*pubkey));
    }
    return ret;
}

int secp256k1_ec_privkey_tweak_add(const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *tweak) {
    secp256k1_scalar_t term;
    secp256k1_scalar_t sec;
    int ret = 0;
    int overflow = 0;
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(seckey != NULL);
    ARG_CHECK(tweak != NULL);
    (void)ctx;

    secp256k1_scalar_set_b32(&term, tweak, &overflow);
    secp256k1_scalar_set_b32(&sec, seckey, NULL);

    ret = secp256k1_eckey_privkey_tweak_add(&sec, &term) && !overflow;
    if (ret) {
        secp256k1_scalar_get_b32(seckey, &sec);
    }

    secp256k1_scalar_clear(&sec);
    secp256k1_scalar_clear(&term);
    return ret;
}

int secp256k1_ec_pubkey_tweak_add(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubkey, const unsigned char *tweak) {
    secp256k1_ge_t p;
    secp256k1_scalar_t term;
    int ret = 0;
    int overflow = 0;
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
    ARG_CHECK(pubkey != NULL);
    ARG_CHECK(tweak != NULL);

    secp256k1_scalar_set_b32(&term, tweak, &overflow);
    if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) {
        ret = secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term);
        if (ret) {
            secp256k1_pubkey_save(pubkey, &p);
        } else {
            memset(pubkey, 0, sizeof(*pubkey));
        }
    }

    return ret;
}

int secp256k1_ec_privkey_tweak_mul(const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *tweak) {
    secp256k1_scalar_t factor;
    secp256k1_scalar_t sec;
    int ret = 0;
    int overflow = 0;
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(seckey != NULL);
    ARG_CHECK(tweak != NULL);
    (void)ctx;

    secp256k1_scalar_set_b32(&factor, tweak, &overflow);
    secp256k1_scalar_set_b32(&sec, seckey, NULL);
    ret = secp256k1_eckey_privkey_tweak_mul(&sec, &factor) && !overflow;
    if (ret) {
        secp256k1_scalar_get_b32(seckey, &sec);
    }

    secp256k1_scalar_clear(&sec);
    secp256k1_scalar_clear(&factor);
    return ret;
}

int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubkey, const unsigned char *tweak) {
    secp256k1_ge_t p;
    secp256k1_scalar_t factor;
    int ret = 0;
    int overflow = 0;
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
    ARG_CHECK(pubkey != NULL);
    ARG_CHECK(tweak != NULL);

    secp256k1_scalar_set_b32(&factor, tweak, &overflow);
    if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) {
        ret = secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor);
        if (ret) {
            secp256k1_pubkey_save(pubkey, &p);
        } else {
            memset(pubkey, 0, sizeof(*pubkey));
        }
    }

    return ret;
}

int secp256k1_ec_privkey_export(const secp256k1_context_t* ctx, const unsigned char *seckey, unsigned char *privkey, int *privkeylen, int compressed) {
    secp256k1_scalar_t key;
    int ret = 0;
    ARG_CHECK(seckey != NULL);
    ARG_CHECK(privkey != NULL);
    ARG_CHECK(privkeylen != NULL);
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));

    secp256k1_scalar_set_b32(&key, seckey, NULL);
    ret = secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, privkeylen, &key, compressed);
    secp256k1_scalar_clear(&key);
    return ret;
}

int secp256k1_ec_privkey_import(const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *privkey, int privkeylen) {
    secp256k1_scalar_t key;
    int ret = 0;
    ARG_CHECK(seckey != NULL);
    ARG_CHECK(privkey != NULL);
    (void)ctx;

    ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen);
    if (ret) {
        secp256k1_scalar_get_b32(seckey, &key);
    }
    secp256k1_scalar_clear(&key);
    return ret;
}

int secp256k1_context_randomize(secp256k1_context_t* ctx, const unsigned char *seed32) {
    ARG_CHECK(ctx != NULL);
    ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
    secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
    return 1;
}

int secp256k1_ec_pubkey_combine(const secp256k1_context_t* ctx, secp256k1_pubkey_t *pubnonce, int n, const secp256k1_pubkey_t * const *pubnonces) {
    int i;
    secp256k1_gej_t Qj;
    secp256k1_ge_t Q;

    ARG_CHECK(pubnonce != NULL);
    ARG_CHECK(n >= 1);
    ARG_CHECK(pubnonces != NULL);

    secp256k1_gej_set_infinity(&Qj);

    for (i = 0; i < n; i++) {
        secp256k1_pubkey_load(ctx, &Q, pubnonces[i]);
        secp256k1_gej_add_ge(&Qj, &Qj, &Q);
    }
    if (secp256k1_gej_is_infinity(&Qj)) {
        memset(pubnonce, 0, sizeof(*pubnonce));
        return 0;
    }
    secp256k1_ge_set_gej(&Q, &Qj);
    secp256k1_pubkey_save(pubnonce, &Q);
    return 1;
}

#ifdef ENABLE_MODULE_ECDH
# include "modules/ecdh/main_impl.h"
#endif

#ifdef ENABLE_MODULE_SCHNORR
# include "modules/schnorr/main_impl.h"
#endif

#ifdef ENABLE_MODULE_RANGEPROOF
# include "modules/rangeproof/main_impl.h"
#endif