/*********************************************************************** * Copyright (c) 2015 Gregory Maxwell * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php. * ***********************************************************************/ #ifndef _SECP256K1_PEDERSEN_IMPL_H_ #define _SECP256K1_PEDERSEN_IMPL_H_ /** Alternative generator for secp256k1. * This is the sha256 of 'g' after DER encoding (without compression), * which happens to be a point on the curve. * sage: G2 = EllipticCurve ([F (0), F (7)]).lift_x(int(hashlib.sha256('0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'.decode('hex')).hexdigest(),16)) * sage: '%x %x'%G2.xy() */ static const secp256k1_ge_t secp256k1_ge_const_g2 = SECP256K1_GE_CONST( 0x50929b74UL, 0xc1a04954UL, 0xb78b4b60UL, 0x35e97a5eUL, 0x078a5a0fUL, 0x28ec96d5UL, 0x47bfee9aUL, 0xce803ac0UL, 0x31d3c686UL, 0x3973926eUL, 0x049e637cUL, 0xb1b5f40aUL, 0x36dac28aUL, 0xf1766968UL, 0xc30c2313UL, 0xf3a38904UL ); static void secp256k1_pedersen_context_init(secp256k1_pedersen_context_t *ctx) { ctx->prec = NULL; } static void secp256k1_pedersen_context_build(secp256k1_pedersen_context_t *ctx, const callback_t *cb) { secp256k1_ge_t prec[256]; secp256k1_gej_t gj; secp256k1_gej_t nums_gej; int i, j; if (ctx->prec != NULL) { return; } ctx->prec = (secp256k1_ge_storage_t (*)[16][16])checked_malloc(cb, sizeof(*ctx->prec)); /* get the generator */ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g2); /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */ { static const unsigned char nums_b32[33] = "The scalar for this x is unknown"; secp256k1_fe_t nums_x; secp256k1_ge_t nums_ge; VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32)); VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0)); secp256k1_gej_set_ge(&nums_gej, &nums_ge); /* Add G to make the bits in x uniformly distributed. */ secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g2, NULL); } /* compute prec. */ { secp256k1_gej_t precj[256]; /* Jacobian versions of prec. */ secp256k1_gej_t gbase; secp256k1_gej_t numsbase; gbase = gj; /* 16^j * G */ numsbase = nums_gej; /* 2^j * nums. */ for (j = 0; j < 16; j++) { /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */ precj[j*16] = numsbase; for (i = 1; i < 16; i++) { secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL); } /* Multiply gbase by 16. */ for (i = 0; i < 4; i++) { secp256k1_gej_double_var(&gbase, &gbase, NULL); } /* Multiply numbase by 2. */ secp256k1_gej_double_var(&numsbase, &numsbase, NULL); if (j == 14) { /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ secp256k1_gej_neg(&numsbase, &numsbase); secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL); } } secp256k1_ge_set_all_gej_var(256, prec, precj, cb); } for (j = 0; j < 16; j++) { for (i = 0; i < 16; i++) { secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]); } } } static int secp256k1_pedersen_context_is_built(const secp256k1_pedersen_context_t* ctx) { return ctx->prec != NULL; } static void secp256k1_pedersen_context_clone(secp256k1_pedersen_context_t *dst, const secp256k1_pedersen_context_t *src, const callback_t *cb) { if (src->prec == NULL) { dst->prec = NULL; } else { dst->prec = (secp256k1_ge_storage_t (*)[16][16])checked_malloc(cb, sizeof(*dst->prec)); memcpy(dst->prec, src->prec, sizeof(*dst->prec)); } } static void secp256k1_pedersen_context_clear(secp256k1_pedersen_context_t *ctx) { free(ctx->prec); ctx->prec = NULL; } /* Version of secp256k1_ecmult_gen using the second generator and working only on numbers in the range [0 .. 2^64). */ static void secp256k1_pedersen_ecmult_small(const secp256k1_pedersen_context_t *ctx, secp256k1_gej_t *r, uint64_t gn) { secp256k1_ge_t add; secp256k1_ge_storage_t adds; int bits; int i, j; memset(&adds, 0, sizeof(adds)); secp256k1_gej_set_infinity(r); add.infinity = 0; for (j = 0; j < 16; j++) { bits = (gn >> (j * 4)) & 15; for (i = 0; i < 16; i++) { secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits); } secp256k1_ge_from_storage(&add, &adds); secp256k1_gej_add_ge(r, r, &add); } bits = 0; secp256k1_ge_clear(&add); } /* sec * G + value * G2. */ SECP256K1_INLINE static void secp256k1_pedersen_ecmult(const secp256k1_ecmult_gen_context_t *ecmult_gen_ctx, const secp256k1_pedersen_context_t *pedersen_ctx, secp256k1_gej_t *rj, const secp256k1_scalar_t *sec, uint64_t value) { secp256k1_gej_t vj; secp256k1_ecmult_gen(ecmult_gen_ctx, rj, sec); secp256k1_pedersen_ecmult_small(pedersen_ctx, &vj, value); /* FIXME: constant time. */ secp256k1_gej_add_var(rj, rj, &vj, NULL); secp256k1_gej_clear(&vj); } #endif