/*********************************************************************** * Copyright (c) 2014-2015 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php. * ***********************************************************************/ #ifndef _SECP256K1_SCHNORR_IMPL_H_ #define _SECP256K1_SCHNORR_IMPL_H_ #include #include "schnorr.h" #include "num.h" #include "field.h" #include "group.h" #include "ecmult.h" #include "ecmult_gen.h" /** * Custom Schnorr-based signature scheme. They support multiparty signing, public key * recovery and batch validation. * * Rationale for verifying R's y coordinate: * In order to support batch validation and public key recovery, the full R point must * be known to verifiers, rather than just its x coordinate. In order to not risk * being more strict in batch validation than normal validation, validators must be * required to reject signatures with incorrect y coordinate. This is only possible * by including a (relatively slow) field inverse, or a field square root. However, * batch validation offers potentially much higher benefits than this cost. * * Rationale for having an implicit y coordinate oddness: * If we commit to having the full R point known to verifiers, there are two mechanism. * Either include its oddness in the signature, or give it an implicit fixed value. * As the R y coordinate can be flipped by a simple negation of the nonce, we choose the * latter, as it comes with nearly zero impact on signing or validation performance, and * saves a byte in the signature. * * Signing: * Inputs: 32-byte message m, 32-byte scalar key x (!=0), 32-byte scalar nonce k (!=0) * * Compute point R = k * G. Reject nonce if R's y coordinate is odd (or negate nonce). * Compute 32-byte r, the serialization of R's x coordinate. * Compute scalar h = Hash(r || m). Reject nonce if h == 0 or h >= order. * Compute scalar s = k - h * x. * The signature is (r, s). * * * Verification: * Inputs: 32-byte message m, public key point Q, signature: (32-byte r, scalar s) * * Signature is invalid if s >= order. * Signature is invalid if r >= p. * Compute scalar h = Hash(r || m). Signature is invalid if h == 0 or h >= order. * Option 1 (faster for single verification): * Compute point R = h * Q + s * G. Signature is invalid if R is infinity or R's y coordinate is odd. * Signature is valid if the serialization of R's x coordinate equals r. * Option 2 (allows batch validation and pubkey recovery): * Decompress x coordinate r into point R, with odd y coordinate. Fail if R is not on the curve. * Signature is valid if R + h * Q + s * G == 0. */ static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context_t* ctx, unsigned char *sig64, const secp256k1_scalar_t *key, const secp256k1_scalar_t *nonce, const secp256k1_ge_t *pubnonce, secp256k1_schnorr_msghash_t hash, const unsigned char *msg32) { secp256k1_gej_t Rj; secp256k1_ge_t Ra; unsigned char h32[32]; secp256k1_scalar_t h, s; int overflow; secp256k1_scalar_t n; if (secp256k1_scalar_is_zero(key) || secp256k1_scalar_is_zero(nonce)) { return 0; } n = *nonce; secp256k1_ecmult_gen(ctx, &Rj, &n); if (pubnonce) { secp256k1_gej_add_ge(&Rj, &Rj, pubnonce); } secp256k1_ge_set_gej(&Ra, &Rj); secp256k1_fe_normalize(&Ra.y); if (secp256k1_fe_is_odd(&Ra.y)) { /* R's y coordinate is odd, which is not allowed (see rationale above). Force it to be even by negating the nonce. Note that this even works for multiparty signing, as the R point is known to all participants, which can all decide to flip the sign in unison, resulting in the overall R point to be negated too. */ secp256k1_scalar_negate(&n, &n); } secp256k1_fe_normalize(&Ra.x); secp256k1_fe_get_b32(sig64, &Ra.x); hash(h32, sig64, msg32); overflow = 0; secp256k1_scalar_set_b32(&h, h32, &overflow); if (overflow || secp256k1_scalar_is_zero(&h)) { secp256k1_scalar_clear(&n); return 0; } secp256k1_scalar_mul(&s, &h, key); secp256k1_scalar_negate(&s, &s); secp256k1_scalar_add(&s, &s, &n); secp256k1_scalar_clear(&n); secp256k1_scalar_get_b32(sig64 + 32, &s); return 1; } static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context_t* ctx, const unsigned char *sig64, const secp256k1_ge_t *pubkey, secp256k1_schnorr_msghash_t hash, const unsigned char *msg32) { secp256k1_gej_t Qj, Rj; secp256k1_ge_t Ra; secp256k1_fe_t Rx; secp256k1_scalar_t h, s; unsigned char hh[32]; int overflow; if (secp256k1_ge_is_infinity(pubkey)) { return 0; } hash(hh, sig64, msg32); overflow = 0; secp256k1_scalar_set_b32(&h, hh, &overflow); if (overflow || secp256k1_scalar_is_zero(&h)) { return 0; } overflow = 0; secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow); if (overflow) { return 0; } if (!secp256k1_fe_set_b32(&Rx, sig64)) { return 0; } secp256k1_gej_set_ge(&Qj, pubkey); secp256k1_ecmult(ctx, &Rj, &Qj, &h, &s); if (secp256k1_gej_is_infinity(&Rj)) { return 0; } secp256k1_ge_set_gej_var(&Ra, &Rj); secp256k1_fe_normalize_var(&Ra.y); if (secp256k1_fe_is_odd(&Ra.y)) { return 0; } return secp256k1_fe_equal_var(&Rx, &Ra.x); } static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context_t* ctx, const unsigned char *sig64, secp256k1_ge_t *pubkey, secp256k1_schnorr_msghash_t hash, const unsigned char *msg32) { secp256k1_gej_t Qj, Rj; secp256k1_ge_t Ra; secp256k1_fe_t Rx; secp256k1_scalar_t h, s; unsigned char hh[32]; int overflow; hash(hh, sig64, msg32); overflow = 0; secp256k1_scalar_set_b32(&h, hh, &overflow); if (overflow || secp256k1_scalar_is_zero(&h)) { return 0; } overflow = 0; secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow); if (overflow) { return 0; } if (!secp256k1_fe_set_b32(&Rx, sig64)) { return 0; } if (!secp256k1_ge_set_xo_var(&Ra, &Rx, 0)) { return 0; } secp256k1_gej_set_ge(&Rj, &Ra); secp256k1_scalar_inverse_var(&h, &h); secp256k1_scalar_negate(&s, &s); secp256k1_scalar_mul(&s, &s, &h); secp256k1_ecmult(ctx, &Qj, &Rj, &h, &s); if (secp256k1_gej_is_infinity(&Qj)) { return 0; } secp256k1_ge_set_gej(pubkey, &Qj); return 1; } static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins) { secp256k1_scalar_t s = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); int i; for (i = 0; i < n; i++) { secp256k1_scalar_t si; int overflow; secp256k1_scalar_set_b32(&si, sig64ins[i] + 32, &overflow); if (overflow) { return -1; } if (i) { if (memcmp(sig64ins[i - 1], sig64ins[i], 32) != 0) { return -1; } } secp256k1_scalar_add(&s, &s, &si); } if (secp256k1_scalar_is_zero(&s)) { return 0; } memcpy(sig64, sig64ins[0], 32); secp256k1_scalar_get_b32(sig64 + 32, &s); secp256k1_scalar_clear(&s); return 1; } #endif