/* * Copyright 2009 Colin Percival, 2011 ArtForz, 2011-2014 pooler * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include #include #include static const uint32_t keypad[12] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280 }; static const uint32_t innerpad[11] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0 }; static const uint32_t outerpad[8] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300 }; static const uint32_t finalblk[16] = { 0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620 }; static const uint32_t sha256_h[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static const uint32_t sha256_k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; static inline void sha256_init(uint32_t *state) { memcpy(state, sha256_h, 32); } /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ do { \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; \ } while (0) /* Adjusted round function for rotating state */ #define RNDr(S, W, i) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i] + sha256_k[i]) #define swab32(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) static inline void sha256_transform(uint32_t *state, const uint32_t *block, int swap) { uint32_t W[64]; uint32_t S[8]; uint32_t t0, t1; int i; /* 1. Prepare message schedule W. */ if (swap) { for (i = 0; i < 16; i++) W[i] = swab32(block[i]); } else memcpy(W, block, 64); for (i = 16; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } /* 2. Initialize working variables. */ memcpy(S, state, 32); /* 3. Mix. */ RNDr(S, W, 0); RNDr(S, W, 1); RNDr(S, W, 2); RNDr(S, W, 3); RNDr(S, W, 4); RNDr(S, W, 5); RNDr(S, W, 6); RNDr(S, W, 7); RNDr(S, W, 8); RNDr(S, W, 9); RNDr(S, W, 10); RNDr(S, W, 11); RNDr(S, W, 12); RNDr(S, W, 13); RNDr(S, W, 14); RNDr(S, W, 15); RNDr(S, W, 16); RNDr(S, W, 17); RNDr(S, W, 18); RNDr(S, W, 19); RNDr(S, W, 20); RNDr(S, W, 21); RNDr(S, W, 22); RNDr(S, W, 23); RNDr(S, W, 24); RNDr(S, W, 25); RNDr(S, W, 26); RNDr(S, W, 27); RNDr(S, W, 28); RNDr(S, W, 29); RNDr(S, W, 30); RNDr(S, W, 31); RNDr(S, W, 32); RNDr(S, W, 33); RNDr(S, W, 34); RNDr(S, W, 35); RNDr(S, W, 36); RNDr(S, W, 37); RNDr(S, W, 38); RNDr(S, W, 39); RNDr(S, W, 40); RNDr(S, W, 41); RNDr(S, W, 42); RNDr(S, W, 43); RNDr(S, W, 44); RNDr(S, W, 45); RNDr(S, W, 46); RNDr(S, W, 47); RNDr(S, W, 48); RNDr(S, W, 49); RNDr(S, W, 50); RNDr(S, W, 51); RNDr(S, W, 52); RNDr(S, W, 53); RNDr(S, W, 54); RNDr(S, W, 55); RNDr(S, W, 56); RNDr(S, W, 57); RNDr(S, W, 58); RNDr(S, W, 59); RNDr(S, W, 60); RNDr(S, W, 61); RNDr(S, W, 62); RNDr(S, W, 63); /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; } static inline void HMAC_SHA256_80_init(const uint32_t *key,uint32_t *tstate, uint32_t *ostate) { uint32_t ihash[8]; uint32_t pad[16]; int i; /* tstate is assumed to contain the midstate of key */ memcpy(pad, key + 16, 16); memcpy(pad + 4, keypad, 48); sha256_transform(tstate, pad, 0); memcpy(ihash, tstate, 32); sha256_init(ostate); for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x5c5c5c5c; for (; i < 16; i++) pad[i] = 0x5c5c5c5c; sha256_transform(ostate, pad, 0); sha256_init(tstate); for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x36363636; for (; i < 16; i++) pad[i] = 0x36363636; sha256_transform(tstate, pad, 0); } static inline void PBKDF2_SHA256_80_128(const uint32_t *tstate,const uint32_t *ostate, const uint32_t *salt, uint32_t *output) { uint32_t istate[8], ostate2[8],ibuf[16], obuf[16]; int i, j; memcpy(istate, tstate, 32); sha256_transform(istate, salt, 0); memcpy(ibuf, salt + 16, 16); memcpy(ibuf + 5, innerpad, 44); memcpy(obuf + 8, outerpad, 32); for (i = 0; i < 4; i++) { memcpy(obuf, istate, 32); ibuf[4] = i + 1; sha256_transform(obuf, ibuf, 0); memcpy(ostate2, ostate, 32); sha256_transform(ostate2, obuf, 0); for (j = 0; j < 8; j++) output[8 * i + j] = swab32(ostate2[j]); } } static inline void PBKDF2_SHA256_128_32(uint32_t *tstate, uint32_t *ostate,const uint32_t *salt, uint32_t *output) { uint32_t buf[16]; int i; sha256_transform(tstate, salt, 1); sha256_transform(tstate, salt + 16, 1); sha256_transform(tstate, finalblk, 0); memcpy(buf, tstate, 32); memcpy(buf + 8, outerpad, 32); sha256_transform(ostate, buf, 0); for (i = 0; i < 8; i++) output[i] = swab32(ostate[i]); } static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) { uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; int i; x00 = (B[ 0] ^= Bx[ 0]); x01 = (B[ 1] ^= Bx[ 1]); x02 = (B[ 2] ^= Bx[ 2]); x03 = (B[ 3] ^= Bx[ 3]); x04 = (B[ 4] ^= Bx[ 4]); x05 = (B[ 5] ^= Bx[ 5]); x06 = (B[ 6] ^= Bx[ 6]); x07 = (B[ 7] ^= Bx[ 7]); x08 = (B[ 8] ^= Bx[ 8]); x09 = (B[ 9] ^= Bx[ 9]); x10 = (B[10] ^= Bx[10]); x11 = (B[11] ^= Bx[11]); x12 = (B[12] ^= Bx[12]); x13 = (B[13] ^= Bx[13]); x14 = (B[14] ^= Bx[14]); x15 = (B[15] ^= Bx[15]); for (i = 0; i < 8; i += 2) { #define R(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); /* Operate on rows. */ x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); #undef R } B[ 0] += x00; B[ 1] += x01; B[ 2] += x02; B[ 3] += x03; B[ 4] += x04; B[ 5] += x05; B[ 6] += x06; B[ 7] += x07; B[ 8] += x08; B[ 9] += x09; B[10] += x10; B[11] += x11; B[12] += x12; B[13] += x13; B[14] += x14; B[15] += x15; } static inline void scrypt_core(uint32_t *X, uint32_t *V, int N) { uint32_t i, j, k; for (i = 0; i < N; i++) { //printf("core.%d V.%p X.%p\n",i,V,X); memcpy(&V[i * 32], X, 128); xor_salsa8(&X[0], &X[16]); xor_salsa8(&X[16], &X[0]); } for (i = 0; i < N; i++) { j = 32 * (X[16] & (N - 1)); for (k = 0; k < 32; k++) X[k] ^= V[j + k]; xor_salsa8(&X[0], &X[16]); xor_salsa8(&X[16], &X[0]); } } void scrypt_1024_1_1_256(const uint32_t *input,uint32_t *output,uint32_t *midstate,uint8_t *scratchpad, int N) { uint32_t *V,tstate[8],ostate[8],X[32] #ifndef WIN32 __attribute__((aligned(128))) #endif ; V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); memcpy(tstate, midstate, 32); HMAC_SHA256_80_init(input, tstate, ostate); PBKDF2_SHA256_80_128(tstate, ostate, input, X); scrypt_core(X, V, N); PBKDF2_SHA256_128_32(tstate, ostate, X, output); } void calc_scrypthash(uint32_t *hash,void *data) { uint8_t *scratchbuf; uint32_t midstate[8]; memset(midstate,0,sizeof(midstate)); memset(hash,0,32); sha256_init(midstate); sha256_transform(midstate,(void *)data,0); scratchbuf = malloc(1024 * 128 + 64); scrypt_1024_1_1_256((void *)data,hash,midstate,scratchbuf,1024); free(scratchbuf); } //010000000000000000000000000000000000000000000000000000000000000000000000d9ced4ed1130f7b7faad9be25323ffafa33232a17c3edf6cfd97bee6bafbdd97b9aa8e4ef0ff0f1ecd513f7c //010000000000000000000000000000000000000000000000000000000000000000000000d9ced4ed1130f7b7faad9be25323ffafa33232a17c3edf6cfd97bee6bafbdd97b9aa8e4ef0ff0f1ecd513f7c00