You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

735 lines
26 KiB

/**********************************************************************
* Copyright (c) 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_RANGEPROOF_IMPL_H_
#define _SECP256K1_RANGEPROOF_IMPL_H_
#include "scalar.h"
#include "group.h"
#include "rangeproof.h"
#include "hash_impl.h"
#include "modules/rangeproof/pedersen.h"
#include "modules/rangeproof/borromean.h"
static const int secp256k1_rangeproof_offsets[20] = {
0, 96, 189, 276, 360, 438, 510, 579, 642,
699, 753, 801, 843, 882, 915, 942, 966, 984,
996, 1005,
};
static void secp256k1_rangeproof_context_init(secp256k1_rangeproof_context_t *ctx) {
ctx->prec = NULL;
}
static void secp256k1_rangeproof_context_build(secp256k1_rangeproof_context_t *ctx, const callback_t* cb) {
secp256k1_ge_t *prec;
secp256k1_gej_t *precj;
secp256k1_gej_t gj;
secp256k1_gej_t one;
int i, pos;
if (ctx->prec != NULL) {
return;
}
precj = (secp256k1_gej_t (*))checked_malloc(cb, sizeof(*precj) * 1005);
if (precj == NULL) {
return;
}
prec = (secp256k1_ge_t (*))checked_malloc(cb, sizeof(*prec) * 1005);
if (prec == NULL) {
free(precj);
return;
}
/* get the generator */
secp256k1_gej_set_ge(&one, &secp256k1_ge_const_g2);
secp256k1_gej_neg(&one, &one);
/* compute prec. */
pos = 0;
for (i = 0; i < 19; i++) {
int pmax;
pmax = secp256k1_rangeproof_offsets[i + 1];
gj = one;
while (pos < pmax) {
precj[pos] = gj;
pos++;
secp256k1_gej_double_var(&precj[pos], &gj, NULL);
pos++;
secp256k1_gej_add_var(&precj[pos], &precj[pos - 1], &gj, NULL);
pos++;
if (pos < pmax - 1) {
secp256k1_gej_double_var(&gj, &precj[pos - 2], NULL);
}
}
if (i < 18) {
secp256k1_gej_double_var(&gj, &one, NULL);
one = gj;
secp256k1_gej_double_var(&gj, &gj, NULL);
secp256k1_gej_double_var(&gj, &gj, NULL);
secp256k1_gej_add_var(&one, &one, &gj, NULL);
}
}
VERIFY_CHECK(pos == 1005);
secp256k1_ge_set_all_gej_var(1005, prec, precj, cb);
free(precj);
ctx->prec = (secp256k1_ge_storage_t (*)[1005])checked_malloc(cb, sizeof(*ctx->prec));
if (ctx->prec == NULL) {
free(prec);
return;
}
for (i = 0; i < 1005; i++) {
secp256k1_ge_to_storage(&(*ctx->prec)[i], &prec[i]);
}
free(prec);
}
static int secp256k1_rangeproof_context_is_built(const secp256k1_rangeproof_context_t* ctx) {
return ctx->prec != NULL;
}
static void secp256k1_rangeproof_context_clone(secp256k1_rangeproof_context_t *dst,
const secp256k1_rangeproof_context_t *src, const callback_t* cb) {
if (src->prec == NULL) {
dst->prec = NULL;
} else {
dst->prec = (secp256k1_ge_storage_t (*)[1005])checked_malloc(cb, sizeof(*dst->prec));
memcpy(dst->prec, src->prec, sizeof(*dst->prec));
}
}
static void secp256k1_rangeproof_context_clear(secp256k1_rangeproof_context_t *ctx) {
free(ctx->prec);
ctx->prec = NULL;
}
SECP256K1_INLINE static void secp256k1_rangeproof_pub_expand(const secp256k1_rangeproof_context_t *ctx, secp256k1_gej_t *pubs,
int exp, int *rsizes, int rings) {
secp256k1_ge_t ge;
secp256k1_ge_storage_t *basis;
int i;
int j;
int npub;
VERIFY_CHECK(exp < 19);
if (exp < 0) {
exp = 0;
}
basis = &(*ctx->prec)[secp256k1_rangeproof_offsets[exp]];
npub = 0;
for (i = 0; i < rings; i++) {
for (j = 1; j < rsizes[i]; j++) {
secp256k1_ge_from_storage(&ge, &basis[i * 3 + j - 1]);
secp256k1_gej_add_ge_var(&pubs[npub + j], &pubs[npub], &ge, NULL);
}
npub += rsizes[i];
}
}
SECP256K1_INLINE static int secp256k1_rangeproof_genrand(secp256k1_scalar_t *sec, secp256k1_scalar_t *s, unsigned char *message,
int *rsizes, int rings, const unsigned char *nonce, const unsigned char *commit, const unsigned char *proof, int len) {
unsigned char tmp[32];
unsigned char rngseed[32 + 33 + 10];
secp256k1_rfc6979_hmac_sha256_t rng;
secp256k1_scalar_t acc;
int overflow;
int ret;
int i;
int j;
int b;
int npub;
VERIFY_CHECK(len <= 10);
memcpy(rngseed, nonce, 32);
memcpy(rngseed + 32, commit, 33);
memcpy(rngseed + 65, proof, len);
secp256k1_rfc6979_hmac_sha256_initialize(&rng, rngseed, 32 + 33 + len);
secp256k1_scalar_clear(&acc);
npub = 0;
ret = 1;
for (i = 0; i < rings; i++) {
if (i < rings - 1) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32);
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32);
secp256k1_scalar_set_b32(&sec[i], tmp, &overflow);
} while (overflow || secp256k1_scalar_is_zero(&sec[i]));
secp256k1_scalar_add(&acc, &acc, &sec[i]);
} else {
secp256k1_scalar_negate(&acc, &acc);
sec[i] = acc;
}
for (j = 0; j < rsizes[i]; j++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32);
if (message) {
for (b = 0; b < 32; b++) {
tmp[b] ^= message[(i * 4 + j) * 32 + b];
message[(i * 4 + j) * 32 + b] = tmp[b];
}
}
secp256k1_scalar_set_b32(&s[npub], tmp, &overflow);
ret &= !(overflow || secp256k1_scalar_is_zero(&s[npub]));
npub++;
}
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
secp256k1_scalar_clear(&acc);
memset(tmp, 0, 32);
return ret;
}
SECP256K1_INLINE static int secp256k1_range_proveparams(uint64_t *v, int *rings, int *rsizes, int *npub, int *secidx, uint64_t *min_value,
int *mantissa, uint64_t *scale, int *exp, int *min_bits, uint64_t value) {
int i;
*rings = 1;
rsizes[0] = 1;
secidx[0] = 0;
*scale = 1;
*mantissa = 0;
*npub = 0;
if (*min_value == UINT64_MAX) {
/* If the minimum value is the maximal representable value, then we cannot code a range. */
*exp = -1;
}
if (*exp >= 0) {
int max_bits;
uint64_t v2;
if ((*min_value && value > INT64_MAX) || (value && *min_value >= INT64_MAX)) {
/* If either value or min_value is >= 2^63-1 then the other must by zero to avoid overflowing the proven range. */
return 0;
}
max_bits = *min_value ? secp256k1_clz64_var(*min_value) : 64;
if (*min_bits > max_bits) {
*min_bits = max_bits;
}
if (*min_bits > 61 || value > INT64_MAX) {
/** Ten is not a power of two, so dividing by ten and then representing in base-2 times ten
* expands the representable range. The verifier requires the proven range is within 0..2**64.
* For very large numbers (all over 2**63) we must change our exponent to compensate.
* Rather than handling it precisely, this just disables use of the exponent for big values.
*/
*exp = 0;
}
/* Mask off the least significant digits, as requested. */
*v = value - *min_value;
/* If the user has asked for more bits of proof then there is room for in the exponent, reduce the exponent. */
v2 = *min_bits ? (UINT64_MAX>>(64-*min_bits)) : 0;
for (i = 0; i < *exp && (v2 <= UINT64_MAX / 10); i++) {
*v /= 10;
v2 *= 10;
}
*exp = i;
v2 = *v;
for (i = 0; i < *exp; i++) {
v2 *= 10;
*scale *= 10;
}
/* If the masked number isn't precise, compute the public offset. */
*min_value = value - v2;
/* How many bits do we need to represent our value? */
*mantissa = *v ? 64 - secp256k1_clz64_var(*v) : 1;
if (*min_bits > *mantissa) {
/* If the user asked for more precision, give it to them. */
*mantissa = *min_bits;
}
/* Digits in radix-4, except for the last digit if our mantissa length is odd. */
*rings = (*mantissa + 1) >> 1;
for (i = 0; i < *rings; i++) {
rsizes[i] = ((i < *rings - 1) | (!(*mantissa&1))) ? 4 : 2;
*npub += rsizes[i];
secidx[i] = (*v >> (i*2)) & 3;
}
VERIFY_CHECK(*mantissa>0);
VERIFY_CHECK((*v & ~(UINT64_MAX>>(64-*mantissa))) == 0); /* Did this get all the bits? */
} else {
/* A proof for an exact value. */
*exp = 0;
*min_value = value;
*v = 0;
*npub = 2;
}
VERIFY_CHECK(*v * *scale + *min_value == value);
VERIFY_CHECK(*rings > 0);
VERIFY_CHECK(*rings <= 32);
VERIFY_CHECK(*npub <= 128);
return 1;
}
/* strawman interface, writes proof in proof, a buffer of plen, proves with respect to min_value the range for commit which has the provided blinding factor and value. */
SECP256K1_INLINE static int secp256k1_rangeproof_sign_impl(const secp256k1_ecmult_context_t* ecmult_ctx,
const secp256k1_ecmult_gen_context_t* ecmult_gen_ctx, const secp256k1_pedersen_context_t* pedersen_ctx,
const secp256k1_rangeproof_context_t* rangeproof_ctx, unsigned char *proof, int *plen, uint64_t min_value,
const unsigned char *commit, const unsigned char *blind, const unsigned char *nonce, int exp, int min_bits, uint64_t value){
secp256k1_gej_t pubs[128]; /* Candidate digits for our proof, most inferred. */
secp256k1_scalar_t s[128]; /* Signatures in our proof, most forged. */
secp256k1_scalar_t sec[32]; /* Blinding factors for the correct digits. */
secp256k1_scalar_t k[32]; /* Nonces for our non-forged signatures. */
secp256k1_scalar_t stmp;
secp256k1_sha256_t sha256_m;
unsigned char prep[4096];
unsigned char tmp[33];
unsigned char *signs; /* Location of sign flags in the proof. */
uint64_t v;
uint64_t scale; /* scale = 10^exp. */
int mantissa; /* Number of bits proven in the blinded value. */
int rings; /* How many digits will our proof cover. */
int rsizes[32]; /* How many possible values there are for each place. */
int secidx[32]; /* Which digit is the correct one. */
int len; /* Number of bytes used so far. */
int i;
int overflow;
int npub;
len = 0;
if (*plen < 65 || min_value > value || min_bits > 64 || min_bits < 0 || exp < -1 || exp > 18) {
return 0;
}
if (!secp256k1_range_proveparams(&v, &rings, rsizes, &npub, secidx, &min_value, &mantissa, &scale, &exp, &min_bits, value)) {
return 0;
}
proof[len] = (rsizes[0] > 1 ? (64 | exp) : 0) | (min_value ? 32 : 0);
len++;
if (rsizes[0] > 1) {
VERIFY_CHECK(mantissa > 0 && mantissa <= 64);
proof[len] = mantissa - 1;
len++;
}
if (min_value) {
for (i = 0; i < 8; i++) {
proof[len + i] = (min_value >> ((7-i) * 8)) & 255;
}
len += 8;
}
/* Do we have enough room for the proof? */
if (*plen - len < 32 * (npub + rings - 1) + 32 + ((rings+6) >> 3)) {
return 0;
}
secp256k1_sha256_initialize(&sha256_m);
secp256k1_sha256_write(&sha256_m, commit, 33);
secp256k1_sha256_write(&sha256_m, proof, len);
memset(prep, 0, 4096);
/* Note, the data corresponding to the blinding factors must be zero. */
if (rsizes[rings - 1] > 1) {
int idx;
/* Value encoding sidechannel. */
idx = rsizes[rings - 1] - 1;
idx -= secidx[rings - 1] == idx;
idx = ((rings - 1) * 4 + idx) * 32;
for (i = 0; i < 8; i++) {
prep[8 + i + idx] = prep[16 + i + idx] = prep[24 + i + idx] = (v >> (56 - i * 8)) & 255;
prep[i + idx] = 0;
}
prep[idx] = 128;
}
if (!secp256k1_rangeproof_genrand(sec, s, prep, rsizes, rings, nonce, commit, proof, len)) {
return 0;
}
memset(prep, 0, 4096);
for (i = 0; i < rings; i++) {
/* Sign will overwrite the non-forged signature, move that random value into the nonce. */
k[i] = s[i * 4 + secidx[i]];
secp256k1_scalar_clear(&s[i * 4 + secidx[i]]);
}
/** Genrand returns the last blinding factor as -sum(rest),
* adding in the blinding factor for our commitment, results in the blinding factor for
* the commitment to the last digit that the verifier can compute for itself by subtracting
* all the digits in the proof from the commitment. This lets the prover skip sending the
* blinded value for one digit.
*/
secp256k1_scalar_set_b32(&stmp, blind, &overflow);
secp256k1_scalar_add(&sec[rings - 1], &sec[rings - 1], &stmp);
if (overflow || secp256k1_scalar_is_zero(&sec[rings - 1])) {
return 0;
}
signs = &proof[len];
/* We need one sign bit for each blinded value we send. */
for (i = 0; i < (rings + 6) >> 3; i++) {
signs[i] = 0;
len++;
}
npub = 0;
for (i = 0; i < rings; i++) {
/*OPT: Use the precomputed gen2 basis?*/
secp256k1_pedersen_ecmult(ecmult_gen_ctx, pedersen_ctx, &pubs[npub], &sec[i], ((uint64_t)secidx[i] * scale) << (i*2));
if (secp256k1_gej_is_infinity(&pubs[npub])) {
return 0;
}
if (i < rings - 1) {
int size = 33;
secp256k1_ge_t c;
/*OPT: split loop and batch invert.*/
secp256k1_ge_set_gej_var(&c, &pubs[npub]);
if(!secp256k1_eckey_pubkey_serialize(&c, tmp, &size, 1)) {
return 0;
}
secp256k1_sha256_write(&sha256_m, tmp, 33);
signs[i>>3] |= (tmp[0] == 3) << (i&7);
memcpy(&proof[len], &tmp[1], 32);
len += 32;
}
npub += rsizes[i];
}
secp256k1_rangeproof_pub_expand(rangeproof_ctx, pubs, exp, rsizes, rings);
secp256k1_sha256_finalize(&sha256_m, tmp);
if (!secp256k1_borromean_sign(ecmult_ctx, ecmult_gen_ctx, &proof[len], s, pubs, k, sec, rsizes, secidx, rings, tmp, 32)) {
return 0;
}
len += 32;
for (i = 0; i < npub; i++) {
secp256k1_scalar_get_b32(&proof[len],&s[i]);
len += 32;
}
VERIFY_CHECK(len <= *plen);
*plen = len;
memset(prep, 0, 4096);
return 1;
}
/* Computes blinding factor x given k, s, and the challenge e. */
SECP256K1_INLINE static void secp256k1_rangeproof_recover_x(secp256k1_scalar_t *x, const secp256k1_scalar_t *k, const secp256k1_scalar_t *e,
const secp256k1_scalar_t *s) {
secp256k1_scalar_t stmp;
secp256k1_scalar_negate(x, s);
secp256k1_scalar_add(x, x, k);
secp256k1_scalar_inverse(&stmp, e);
secp256k1_scalar_mul(x, x, &stmp);
}
/* Computes ring's nonce given the blinding factor x, the challenge e, and the signature s. */
SECP256K1_INLINE static void secp256k1_rangeproof_recover_k(secp256k1_scalar_t *k, const secp256k1_scalar_t *x, const secp256k1_scalar_t *e,
const secp256k1_scalar_t *s) {
secp256k1_scalar_t stmp;
secp256k1_scalar_mul(&stmp, x, e);
secp256k1_scalar_add(k, s, &stmp);
}
SECP256K1_INLINE static void secp256k1_rangeproof_ch32xor(unsigned char *x, const unsigned char *y) {
int i;
for (i = 0; i < 32; i++) {
x[i] ^= y[i];
}
}
SECP256K1_INLINE static int secp256k1_rangeproof_rewind_inner(secp256k1_scalar_t *blind, uint64_t *v,
unsigned char *m, int *mlen, secp256k1_scalar_t *ev, secp256k1_scalar_t *s,
int *rsizes, int rings, const unsigned char *nonce, const unsigned char *commit, const unsigned char *proof, int len) {
secp256k1_scalar_t s_orig[128];
secp256k1_scalar_t sec[32];
secp256k1_scalar_t stmp;
unsigned char prep[4096];
unsigned char tmp[32];
uint64_t value;
int offset;
int i;
int j;
int b;
int skip1;
int skip2;
int npub;
npub = ((rings - 1) << 2) + rsizes[rings-1];
VERIFY_CHECK(npub <= 128);
VERIFY_CHECK(npub >= 1);
memset(prep, 0, 4096);
/* Reconstruct the provers random values. */
secp256k1_rangeproof_genrand(sec, s_orig, prep, rsizes, rings, nonce, commit, proof, len);
*v = UINT64_MAX;
secp256k1_scalar_clear(blind);
if (rings == 1 && rsizes[0] == 1) {
/* With only a single proof, we can only recover the blinding factor. */
secp256k1_rangeproof_recover_x(blind, &s_orig[0], &ev[0], &s[0]);
if (v) {
*v = 0;
}
if (mlen) {
*mlen = 0;
}
return 1;
}
npub = (rings - 1) << 2;
for (j = 0; j < 2; j++) {
int idx;
/* Look for a value encoding in the last ring. */
idx = npub + rsizes[rings - 1] - 1 - j;
secp256k1_scalar_get_b32(tmp, &s[idx]);
secp256k1_rangeproof_ch32xor(tmp, &prep[idx * 32]);
if ((tmp[0] & 128) && (memcmp(&tmp[16], &tmp[24], 8) == 0) && (memcmp(&tmp[8], &tmp[16], 8) == 0)) {
value = 0;
for (i = 0; i < 8; i++) {
value = (value << 8) + tmp[24 + i];
}
if (v) {
*v = value;
}
memcpy(&prep[idx * 32], tmp, 32);
break;
}
}
if (j > 1) {
/* Couldn't extract a value. */
if (mlen) {
*mlen = 0;
}
return 0;
}
skip1 = rsizes[rings - 1] - 1 - j;
skip2 = ((value >> ((rings - 1) << 1)) & 3);
if (skip1 == skip2) {
/*Value is in wrong position.*/
if (mlen) {
*mlen = 0;
}
return 0;
}
skip1 += (rings - 1) << 2;
skip2 += (rings - 1) << 2;
/* Like in the rsize[] == 1 case, Having figured out which s is the one which was not forged, we can recover the blinding factor. */
secp256k1_rangeproof_recover_x(&stmp, &s_orig[skip2], &ev[skip2], &s[skip2]);
secp256k1_scalar_negate(&sec[rings - 1], &sec[rings - 1]);
secp256k1_scalar_add(blind, &stmp, &sec[rings - 1]);
if (!m || !mlen || *mlen == 0) {
if (mlen) {
*mlen = 0;
}
/* FIXME: cleanup in early out/failure cases. */
return 1;
}
offset = 0;
npub = 0;
for (i = 0; i < rings; i++) {
int idx;
idx = (value >> (i << 1)) & 3;
for (j = 0; j < rsizes[i]; j++) {
if (npub == skip1 || npub == skip2) {
npub++;
continue;
}
if (idx == j) {
/** For the non-forged signatures the signature is calculated instead of random, instead we recover the prover's nonces.
* this could just as well recover the blinding factors and messages could be put there as is done for recovering the
* blinding factor in the last ring, but it takes an inversion to recover x so it's faster to put the message data in k.
*/
secp256k1_rangeproof_recover_k(&stmp, &sec[i], &ev[npub], &s[npub]);
} else {
stmp = s[npub];
}
secp256k1_scalar_get_b32(tmp, &stmp);
secp256k1_rangeproof_ch32xor(tmp, &prep[npub * 32]);
for (b = 0; b < 32 && offset < *mlen; b++) {
m[offset] = tmp[b];
offset++;
}
npub++;
}
}
*mlen = offset;
memset(prep, 0, 4096);
for (i = 0; i < 128; i++) {
secp256k1_scalar_clear(&s_orig[i]);
}
for (i = 0; i < 32; i++) {
secp256k1_scalar_clear(&sec[i]);
}
secp256k1_scalar_clear(&stmp);
return 1;
}
SECP256K1_INLINE static int secp256k1_rangeproof_getheader_impl(int *offset, int *exp, int *mantissa, uint64_t *scale,
uint64_t *min_value, uint64_t *max_value, const unsigned char *proof, int plen) {
int i;
int has_nz_range;
int has_min;
if (plen < 65 || ((proof[*offset] & 128) != 0)) {
return 0;
}
has_nz_range = proof[*offset] & 64;
has_min = proof[*offset] & 32;
*exp = -1;
*mantissa = 0;
if (has_nz_range) {
*exp = proof[*offset] & 31;
*offset += 1;
if (*exp > 18) {
return 0;
}
*mantissa = proof[*offset] + 1;
if (*mantissa > 64) {
return 0;
}
*max_value = UINT64_MAX>>(64-*mantissa);
} else {
*max_value = 0;
}
*offset += 1;
*scale = 1;
for (i = 0; i < *exp; i++) {
if (*max_value > UINT64_MAX / 10) {
return 0;
}
*max_value *= 10;
*scale *= 10;
}
*min_value = 0;
if (has_min) {
if(plen - *offset < 8) {
return 0;
}
/*FIXME: Compact minvalue encoding?*/
for (i = 0; i < 8; i++) {
*min_value = (*min_value << 8) | proof[*offset + i];
}
*offset += 8;
}
if (*max_value > UINT64_MAX - *min_value) {
return 0;
}
*max_value += *min_value;
return 1;
}
/* Verifies range proof (len plen) for 33-byte commit, the min/max values proven are put in the min/max arguments; returns 0 on failure 1 on success.*/
SECP256K1_INLINE static int secp256k1_rangeproof_verify_impl(const secp256k1_ecmult_context_t* ecmult_ctx,
const secp256k1_ecmult_gen_context_t* ecmult_gen_ctx,
const secp256k1_pedersen_context_t* pedersen_ctx, const secp256k1_rangeproof_context_t* rangeproof_ctx,
unsigned char *blindout, uint64_t *value_out, unsigned char *message_out, int *outlen, const unsigned char *nonce,
uint64_t *min_value, uint64_t *max_value, const unsigned char *commit, const unsigned char *proof, int plen) {
secp256k1_gej_t accj;
secp256k1_gej_t pubs[128];
secp256k1_ge_t c;
secp256k1_scalar_t s[128];
secp256k1_scalar_t evalues[128]; /* Challenges, only used during proof rewind. */
secp256k1_sha256_t sha256_m;
int rsizes[32];
int ret;
int i;
int exp;
int mantissa;
int offset;
int rings;
int overflow;
int npub;
int offset_post_header;
uint64_t scale;
unsigned char signs[31];
unsigned char m[33];
const unsigned char *e0;
offset = 0;
if (!secp256k1_rangeproof_getheader_impl(&offset, &exp, &mantissa, &scale, min_value, max_value, proof, plen)) {
return 0;
}
offset_post_header = offset;
rings = 1;
rsizes[0] = 1;
npub = 1;
if (mantissa != 0) {
rings = (mantissa >> 1);
for (i = 0; i < rings; i++) {
rsizes[i] = 4;
}
npub = (mantissa >> 1) << 2;
if (mantissa & 1) {
rsizes[rings] = 2;
npub += rsizes[rings];
rings++;
}
}
VERIFY_CHECK(rings <= 32);
if (plen - offset < 32 * (npub + rings - 1) + 32 + ((rings+6) >> 3)) {
return 0;
}
secp256k1_sha256_initialize(&sha256_m);
secp256k1_sha256_write(&sha256_m, commit, 33);
secp256k1_sha256_write(&sha256_m, proof, offset);
for(i = 0; i < rings - 1; i++) {
signs[i] = (proof[offset + ( i>> 3)] & (1 << (i & 7))) != 0;
}
offset += (rings + 6) >> 3;
if ((rings - 1) & 7) {
/* Number of coded blinded points is not a multiple of 8, force extra sign bits to 0 to reject mutation. */
if ((proof[offset - 1] >> ((rings - 1) & 7)) != 0) {
return 0;
}
}
npub = 0;
secp256k1_gej_set_infinity(&accj);
if (*min_value) {
secp256k1_pedersen_ecmult_small(pedersen_ctx, &accj, *min_value);
}
for(i = 0; i < rings - 1; i++) {
memcpy(&m[1], &proof[offset], 32);
m[0] = 2 + signs[i];
if (!secp256k1_eckey_pubkey_parse(&c, m, 33)) {
return 0;
}
secp256k1_sha256_write(&sha256_m, m, 33);
secp256k1_gej_set_ge(&pubs[npub], &c);
secp256k1_gej_add_ge_var(&accj, &accj, &c, NULL);
offset += 32;
npub += rsizes[i];
}
secp256k1_gej_neg(&accj, &accj);
if (!secp256k1_eckey_pubkey_parse(&c, commit, 33)) {
return 0;
}
secp256k1_gej_add_ge_var(&pubs[npub], &accj, &c, NULL);
if (secp256k1_gej_is_infinity(&pubs[npub])) {
return 0;
}
secp256k1_rangeproof_pub_expand(rangeproof_ctx, pubs, exp, rsizes, rings);
npub += rsizes[rings - 1];
e0 = &proof[offset];
offset += 32;
for (i = 0; i < npub; i++) {
secp256k1_scalar_set_b32(&s[i], &proof[offset], &overflow);
if (overflow) {
return 0;
}
offset += 32;
}
if (offset != plen) {
/*Extra data found, reject.*/
return 0;
}
secp256k1_sha256_finalize(&sha256_m, m);
ret = secp256k1_borromean_verify(ecmult_ctx, nonce ? evalues : NULL, e0, s, pubs, rsizes, rings, m, 32);
if (ret && nonce) {
/* Given the nonce, try rewinding the witness to recover its initial state. */
secp256k1_scalar_t blind;
unsigned char commitrec[33];
uint64_t vv;
if (!ecmult_gen_ctx) {
return 0;
}
if (!secp256k1_rangeproof_rewind_inner(&blind, &vv, message_out, outlen, evalues, s, rsizes, rings, nonce, commit, proof, offset_post_header)) {
return 0;
}
/* Unwind apparently successful, see if the commitment can be reconstructed. */
/* FIXME: should check vv is in the mantissa's range. */
vv = (vv * scale) + *min_value;
secp256k1_pedersen_ecmult(ecmult_gen_ctx, pedersen_ctx, &accj, &blind, vv);
if (secp256k1_gej_is_infinity(&accj)) {
return 0;
}
secp256k1_ge_set_gej(&c, &accj);
i = 33;
secp256k1_eckey_pubkey_serialize(&c, commitrec, &i, 1);
if (memcmp(commitrec, commit, 33) != 0) {
return 0;
}
if (blindout) {
secp256k1_scalar_get_b32(blindout, &blind);
}
if (value_out) {
*value_out = vv;
}
}
return ret;
}
#endif