You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1787 lines
70 KiB

/******************************************************************************
* Copyright © 2014-2015 The SuperNET Developers. *
* *
* See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at *
* the top-level directory of this distribution for the individual copyright *
* holder information and the developer policies on copyright and licensing. *
* *
* Unless otherwise agreed in a custom licensing agreement, no part of the *
* SuperNET software, including this file may be copied, modified, propagated *
* or distributed except according to the terms contained in the LICENSE file *
* *
* Removal or modification of this copyright notice is prohibited. *
* *
******************************************************************************/
// derived from curve25519_donna
#include "../includes/curve25519.h"
#undef force_inline
#define force_inline __attribute__((always_inline))
// Sum two numbers: output += in
static inline bits320 force_inline fsum(bits320 output,bits320 in)
{
int32_t i;
for (i=0; i<5; i++)
output.ulongs[i] += in.ulongs[i];
return(output);
}
static inline void force_inline fdifference_backwards(uint64_t *out,const uint64_t *in)
{
static const uint64_t two54m152 = (((uint64_t)1) << 54) - 152; // 152 is 19 << 3
static const uint64_t two54m8 = (((uint64_t)1) << 54) - 8;
int32_t i;
out[0] = in[0] + two54m152 - out[0];
for (i=1; i<5; i++)
out[i] = in[i] + two54m8 - out[i];
}
inline void force_inline store_limb(uint8_t *out,uint64_t in)
{
int32_t i;
for (i=0; i<8; i++,in>>=8)
out[i] = (in & 0xff);
}
static inline uint64_t force_inline load_limb(uint8_t *in)
{
return
((uint64_t)in[0]) |
(((uint64_t)in[1]) << 8) |
(((uint64_t)in[2]) << 16) |
(((uint64_t)in[3]) << 24) |
(((uint64_t)in[4]) << 32) |
(((uint64_t)in[5]) << 40) |
(((uint64_t)in[6]) << 48) |
(((uint64_t)in[7]) << 56);
}
// Take a little-endian, 32-byte number and expand it into polynomial form
bits320 fexpand(bits256 basepoint)
{
bits320 out;
out.ulongs[0] = load_limb(basepoint.bytes) & 0x7ffffffffffffLL;
out.ulongs[1] = (load_limb(basepoint.bytes+6) >> 3) & 0x7ffffffffffffLL;
out.ulongs[2] = (load_limb(basepoint.bytes+12) >> 6) & 0x7ffffffffffffLL;
out.ulongs[3] = (load_limb(basepoint.bytes+19) >> 1) & 0x7ffffffffffffLL;
out.ulongs[4] = (load_limb(basepoint.bytes+24) >> 12) & 0x7ffffffffffffLL;
return(out);
}
#if __amd64__
// donna: special gcc mode for 128-bit integers. It's implemented on 64-bit platforms only as far as I know.
typedef unsigned uint128_t __attribute__((mode(TI)));
// Multiply a number by a scalar: output = in * scalar
static inline bits320 force_inline fscalar_product(const bits320 in,const uint64_t scalar)
{
int32_t i; uint128_t a = 0; bits320 output;
a = ((uint128_t)in.ulongs[0]) * scalar;
output.ulongs[0] = ((uint64_t)a) & 0x7ffffffffffffLL;
for (i=1; i<5; i++)
{
a = ((uint128_t)in.ulongs[i]) * scalar + ((uint64_t) (a >> 51));
output.ulongs[i] = ((uint64_t)a) & 0x7ffffffffffffLL;
}
output.ulongs[0] += (a >> 51) * 19;
return(output);
}
// Multiply two numbers: output = in2 * in
// output must be distinct to both inputs. The inputs are reduced coefficient form, the output is not.
// Assumes that in[i] < 2**55 and likewise for in2. On return, output[i] < 2**52
bits320 fmul(const bits320 in2,const bits320 in)
{
uint128_t t[5]; uint64_t r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c; bits320 out;
r0 = in.ulongs[0], r1 = in.ulongs[1], r2 = in.ulongs[2], r3 = in.ulongs[3], r4 = in.ulongs[4];
s0 = in2.ulongs[0], s1 = in2.ulongs[1], s2 = in2.ulongs[2], s3 = in2.ulongs[3], s4 = in2.ulongs[4];
t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
r4 *= 19, r1 *= 19, r2 *= 19, r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
t[3] += ((uint128_t) r4) * s4;
r0 = (uint64_t)t[0] & 0x7ffffffffffffLL; c = (uint64_t)(t[0] >> 51);
t[1] += c; r1 = (uint64_t)t[1] & 0x7ffffffffffffLL; c = (uint64_t)(t[1] >> 51);
t[2] += c; r2 = (uint64_t)t[2] & 0x7ffffffffffffLL; c = (uint64_t)(t[2] >> 51);
t[3] += c; r3 = (uint64_t)t[3] & 0x7ffffffffffffLL; c = (uint64_t)(t[3] >> 51);
t[4] += c; r4 = (uint64_t)t[4] & 0x7ffffffffffffLL; c = (uint64_t)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffffLL;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffffLL;
r2 += c;
out.ulongs[0] = r0, out.ulongs[1] = r1, out.ulongs[2] = r2, out.ulongs[3] = r3, out.ulongs[4] = r4;
return(out);
}
inline bits320 force_inline fsquare_times(const bits320 in,uint64_t count)
{
uint128_t t[5]; uint64_t r0,r1,r2,r3,r4,c,d0,d1,d2,d4,d419; bits320 out;
r0 = in.ulongs[0], r1 = in.ulongs[1], r2 = in.ulongs[2], r3 = in.ulongs[3], r4 = in.ulongs[4];
do
{
d0 = r0 * 2;
d1 = r1 * 2;
d2 = r2 * 2 * 19;
d419 = r4 * 19;
d4 = d419 * 2;
t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1 + (((uint128_t) d2) * (r3 ));
t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2 + (((uint128_t) r3) * (r3 * 19));
t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1 + (((uint128_t) d4) * (r3 ));
t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2 + (((uint128_t) r4) * (d419 ));
t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3 + (((uint128_t) r2) * (r2 ));
r0 = (uint64_t)t[0] & 0x7ffffffffffffLL; c = (uint64_t)(t[0] >> 51);
t[1] += c; r1 = (uint64_t)t[1] & 0x7ffffffffffffLL; c = (uint64_t)(t[1] >> 51);
t[2] += c; r2 = (uint64_t)t[2] & 0x7ffffffffffffLL; c = (uint64_t)(t[2] >> 51);
t[3] += c; r3 = (uint64_t)t[3] & 0x7ffffffffffffL; c = (uint64_t)(t[3] >> 51);
t[4] += c; r4 = (uint64_t)t[4] & 0x7ffffffffffffLL; c = (uint64_t)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffffLL;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffffLL;
r2 += c;
} while( --count );
out.ulongs[0] = r0, out.ulongs[1] = r1, out.ulongs[2] = r2, out.ulongs[3] = r3, out.ulongs[4] = r4;
return(out);
}
static inline void force_inline fcontract_iter(uint128_t t[5],int32_t flag)
{
int32_t i; uint64_t mask = 0x7ffffffffffffLL;
for (i=0; i<4; i++)
t[i+1] += t[i] >> 51, t[i] &= mask;
if ( flag != 0 )
t[0] += 19 * (t[4] >> 51); t[4] &= mask;
}
// donna: Take a fully reduced polynomial form number and contract it into a little-endian, 32-byte array
bits256 fcontract(const bits320 input)
{
uint128_t t[5]; int32_t i; bits256 out;
for (i=0; i<5; i++)
t[i] = input.ulongs[i];
fcontract_iter(t,1), fcontract_iter(t,1);
// donna: now t is between 0 and 2^255-1, properly carried.
// donna: case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1.
t[0] += 19, fcontract_iter(t,1);
// now between 19 and 2^255-1 in both cases, and offset by 19.
t[0] += 0x8000000000000 - 19;
for (i=1; i<5; i++)
t[i] += 0x8000000000000 - 1;
// now between 2^255 and 2^256-20, and offset by 2^255.
fcontract_iter(t,0);
store_limb(out.bytes,t[0] | (t[1] << 51));
store_limb(out.bytes+8,(t[1] >> 13) | (t[2] << 38));
store_limb(out.bytes+16,(t[2] >> 26) | (t[3] << 25));
store_limb(out.bytes+24,(t[3] >> 39) | (t[4] << 12));
return(out);
}
bits256 curve25519(bits256 mysecret,bits256 basepoint)
{
bits320 bp,x,z;
mysecret.bytes[0] &= 0xf8, mysecret.bytes[31] &= 0x7f, mysecret.bytes[31] |= 0x40;
bp = fexpand(basepoint);
cmult(&x,&z,mysecret,bp);
return(fcontract(fmul(x,crecip(z))));
}
#else
// from curve25519-donna.c
typedef uint8_t u8;
typedef int32_t s32;
typedef int64_t limb;
/* Multiply a number by a scalar: output = in * scalar */
static void fscalar_product32(limb *output, const limb *in, const limb scalar) {
unsigned i;
for (i = 0; i < 10; ++i) {
output[i] = in[i] * scalar;
}
}
/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs.
static void fproduct(limb *output, const limb *in2, const limb *in) {
output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
((limb) ((s32) in2[1])) * ((s32) in[0]);
output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[0]);
output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[0]);
output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[1])) +
((limb) ((s32) in2[0])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[0]);
output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[0]);
output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[0]);
output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[0]);
output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[0]);
output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[0]);
output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[1])) +
((limb) ((s32) in2[4])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[4]) +
((limb) ((s32) in2[2])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[2]);
output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[2]);
output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[3])) +
((limb) ((s32) in2[4])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[4]);
output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[6]) +
((limb) ((s32) in2[5])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[4]);
output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
((limb) ((s32) in2[5])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[5])) +
((limb) ((s32) in2[6])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[6]);
output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[7]) +
((limb) ((s32) in2[6])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[6]);
output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[7]));
output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[8]);
output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
}*/
/* Reduce a long form to a short form by taking the input mod 2^255 - 19.
*
* On entry: |output[i]| < 14*2^54
* On exit: |output[0..8]| < 280*2^54 */
static void freduce_degree(limb *output) {
/* Each of these shifts and adds ends up multiplying the value by 19.
*
* For output[0..8], the absolute entry value is < 14*2^54 and we add, at
* most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */
output[8] += output[18] << 4;
output[8] += output[18] << 1;
output[8] += output[18];
output[7] += output[17] << 4;
output[7] += output[17] << 1;
output[7] += output[17];
output[6] += output[16] << 4;
output[6] += output[16] << 1;
output[6] += output[16];
output[5] += output[15] << 4;
output[5] += output[15] << 1;
output[5] += output[15];
output[4] += output[14] << 4;
output[4] += output[14] << 1;
output[4] += output[14];
output[3] += output[13] << 4;
output[3] += output[13] << 1;
output[3] += output[13];
output[2] += output[12] << 4;
output[2] += output[12] << 1;
output[2] += output[12];
output[1] += output[11] << 4;
output[1] += output[11] << 1;
output[1] += output[11];
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
}
#if (-1 & 3) != 3
#error "This code only works on a two's complement system"
#endif
/* return v / 2^26, using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb
div_by_2_26(const limb v)
{
/* High word of v; no shift needed. */
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const int32_t sign = ((int32_t) highword) >> 31;
/* Set to 0x3ffffff if v was negative; else set to 0. */
const int32_t roundoff = ((uint32_t) sign) >> 6;
/* Should return v / (1<<26) */
return (v + roundoff) >> 26;
}
/* return v / (2^25), using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb
div_by_2_25(const limb v)
{
/* High word of v; no shift needed*/
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const int32_t sign = ((int32_t) highword) >> 31;
/* Set to 0x1ffffff if v was negative; else set to 0. */
const int32_t roundoff = ((uint32_t) sign) >> 7;
/* Should return v / (1<<25) */
return (v + roundoff) >> 25;
}
/* Reduce all coefficients of the short form input so that |x| < 2^26.
*
* On entry: |output[i]| < 280*2^54 */
static void freduce_coefficients(limb *output) {
unsigned i;
output[10] = 0;
for (i = 0; i < 10; i += 2) {
limb over = div_by_2_26(output[i]);
/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
* most, 280*2^28 in the first iteration of this loop. This is added to the
* next limb and we can approximate the resulting bound of that limb by
* 281*2^54. */
output[i] -= over << 26;
output[i+1] += over;
/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
* 281*2^29. When this is added to the next limb, the resulting bound can
* be approximated as 281*2^54.
*
* For subsequent iterations of the loop, 281*2^54 remains a conservative
* bound and no overflow occurs. */
over = div_by_2_25(output[i+1]);
output[i+1] -= over << 25;
output[i+2] += over;
}
/* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
output[10] = 0;
/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
* So |over| will be no more than 2^16. */
{
limb over = div_by_2_26(output[0]);
output[0] -= over << 26;
output[1] += over;
}
/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
* bound on |output[1]| is sufficient to meet our needs. */
}
/* A helpful wrapper around fproduct: output = in * in2.
*
* On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
*
* output must be distinct to both inputs. The output is reduced degree
* (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26.
static void fmul32(limb *output, const limb *in, const limb *in2)
{
limb t[19];
fproduct(t, in, in2);
//|t[i]| < 14*2^54
freduce_degree(t);
freduce_coefficients(t);
// |t[i]| < 2^26
memcpy(output, t, sizeof(limb) * 10);
}*/
/* Square a number: output = in**2
*
* output must be distinct from the input. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs. */
static void fsquare_inner(limb *output, const limb *in) {
output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
((limb) ((s32) in[0])) * ((s32) in[2]));
output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
((limb) ((s32) in[0])) * ((s32) in[3]));
output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
((limb) ((s32) in[1])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[5]));
output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
((limb) ((s32) in[2])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[6]) +
2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
((limb) ((s32) in[2])) * ((s32) in[5]) +
((limb) ((s32) in[1])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[7]));
output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[5])));
output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
((limb) ((s32) in[3])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[8]) +
((limb) ((s32) in[0])) * ((s32) in[9]));
output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
((limb) ((s32) in[4])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[9])));
output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
((limb) ((s32) in[4])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[8]) +
((limb) ((s32) in[2])) * ((s32) in[9]));
output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[9])));
output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
((limb) ((s32) in[5])) * ((s32) in[8]) +
((limb) ((s32) in[4])) * ((s32) in[9]));
output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
((limb) ((s32) in[6])) * ((s32) in[8]) +
2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
((limb) ((s32) in[6])) * ((s32) in[9]));
output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
}
/* fsquare sets output = in^2.
*
* On entry: The |in| argument is in reduced coefficients form and |in[i]| <
* 2^27.
*
* On exit: The |output| argument is in reduced coefficients form (indeed, one
* need only provide storage for 10 limbs) and |out[i]| < 2^26. */
static void
fsquare32(limb *output, const limb *in) {
limb t[19];
fsquare_inner(t, in);
/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
* 2^(27+27) and fsquare_inner adds together, at most, 14 of those
* products. */
freduce_degree(t);
freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10);
}
#if (-32 >> 1) != -16
#error "This code only works when >> does sign-extension on negative numbers"
#endif
/* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
static s32 s32_eq(s32 a, s32 b) {
a = ~(a ^ b);
a &= a << 16;
a &= a << 8;
a &= a << 4;
a &= a << 2;
a &= a << 1;
return a >> 31;
}
/* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
* both non-negative. */
static s32 s32_gte(s32 a, s32 b) {
a -= b;
/* a >= 0 iff a >= b. */
return ~(a >> 31);
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array.
*
* On entry: |input_limbs[i]| < 2^26 */
static void fcontract32(u8 *output, limb *input_limbs)
{
int i;
int j;
s32 input[10];
s32 mask;
/* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
for (i = 0; i < 10; i++)
input[i] = (s32)input_limbs[i];
for (j = 0; j < 2; ++j) {
for (i = 0; i < 9; ++i) {
if ((i & 1) == 1) {
/* This calculation is a time-invariant way to make input[i]
* non-negative by borrowing from the next-larger limb. */
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 25);
input[i] = input[i] + (carry << 25);
input[i+1] = input[i+1] - carry;
} else {
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 26);
input[i] = input[i] + (carry << 26);
input[i+1] = input[i+1] - carry;
}
}
/* There's no greater limb for input[9] to borrow from, but we can multiply
* by 19 and borrow from input[0], which is valid mod 2^255-19. */
{
const s32 mask = input[9] >> 31;
const s32 carry = -((input[9] & mask) >> 25);
input[9] = input[9] + (carry << 25);
input[0] = input[0] - (carry * 19);
}
/* After the first iteration, input[1..9] are non-negative and fit within
* 25 or 26 bits, depending on position. However, input[0] may be
* negative. */
}
/* The first borrow-propagation pass above ended with every limb
except (possibly) input[0] non-negative.
If input[0] was negative after the first pass, then it was because of a
carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
In the second pass, each limb is decreased by at most one. Thus the second
borrow-propagation pass could only have wrapped around to decrease
input[0] again if the first pass left input[0] negative *and* input[1]
through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
and this last borrow-propagation step will leave input[1] non-negative. */
{
const s32 mask = input[0] >> 31;
const s32 carry = -((input[0] & mask) >> 26);
input[0] = input[0] + (carry << 26);
input[1] = input[1] - carry;
}
/* All input[i] are now non-negative. However, there might be values between
* 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */
for (j = 0; j < 2; j++) {
for (i = 0; i < 9; i++) {
if ((i & 1) == 1) {
const s32 carry = input[i] >> 25;
input[i] &= 0x1ffffff;
input[i+1] += carry;
} else {
const s32 carry = input[i] >> 26;
input[i] &= 0x3ffffff;
input[i+1] += carry;
}
}
{
const s32 carry = input[9] >> 25;
input[9] &= 0x1ffffff;
input[0] += 19*carry;
}
}
/* If the first carry-chain pass, just above, ended up with a carry from
* input[9], and that caused input[0] to be out-of-bounds, then input[0] was
* < 2^26 + 2*19, because the carry was, at most, two.
*
* If the second pass carried from input[9] again then input[0] is < 2*19 and
* the input[9] -> input[0] carry didn't push input[0] out of bounds. */
/* It still remains the case that input might be between 2^255-19 and 2^255.
* In this case, input[1..9] must take their maximum value and input[0] must
* be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */
mask = s32_gte(input[0], 0x3ffffed);
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
mask &= s32_eq(input[i], 0x1ffffff);
} else {
mask &= s32_eq(input[i], 0x3ffffff);
}
}
/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
* this conditionally subtracts 2^255-19. */
input[0] -= mask & 0x3ffffed;
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
input[i] -= mask & 0x1ffffff;
} else {
input[i] -= mask & 0x3ffffff;
}
}
input[1] <<= 2;
input[2] <<= 3;
input[3] <<= 5;
input[4] <<= 6;
input[6] <<= 1;
input[7] <<= 3;
input[8] <<= 4;
input[9] <<= 6;
#define F(i, s) \
output[s+0] |= input[i] & 0xff; \
output[s+1] = (input[i] >> 8) & 0xff; \
output[s+2] = (input[i] >> 16) & 0xff; \
output[s+3] = (input[i] >> 24) & 0xff;
output[0] = 0;
output[16] = 0;
F(0,0);
F(1,3);
F(2,6);
F(3,9);
F(4,12);
F(5,16);
F(6,19);
F(7,22);
F(8,25);
F(9,28);
#undef F
}
bits320 bits320_limbs(limb limbs[10])
{
bits320 output; int32_t i;
for (i=0; i<10; i++)
output.uints[i] = limbs[i];
return(output);
}
static inline bits320 force_inline fscalar_product(const bits320 in,const uint64_t scalar)
{
limb output[10],input[10]; int32_t i;
for (i=0; i<10; i++)
input[i] = in.uints[i];
fscalar_product32(output,input,scalar);
return(bits320_limbs(output));
}
static inline bits320 force_inline fsquare_times(const bits320 in,uint64_t count)
{
limb output[10],input[10]; int32_t i;
for (i=0; i<10; i++)
input[i] = in.uints[i];
for (i=0; i<count; i++)
{
fsquare32(output,input);
memcpy(input,output,sizeof(input));
}
return(bits320_limbs(output));
}
bits256 fmul_donna(bits256 a,bits256 b);
bits256 crecip_donna(bits256 a);
bits256 fcontract(const bits320 in)
{
bits256 contracted; limb input[10]; int32_t i;
for (i=0; i<10; i++)
input[i] = in.uints[i];
fcontract32(contracted.bytes,input);
return(contracted);
}
bits320 fmul(const bits320 in,const bits320 in2)
{
/*limb output[11],input[10],input2[10]; int32_t i;
for (i=0; i<10; i++)
{
input[i] = in.uints[i];
input2[i] = in2.uints[i];
}
fmul32(output,input,input2);
return(bits320_limbs(output));*/
bits256 mulval;
mulval = fmul_donna(fcontract(in),fcontract(in2));
return(fexpand(mulval));
}
bits256 curve25519(bits256 mysecret,bits256 theirpublic)
{
int32_t curve25519_donna(uint8_t *mypublic,const uint8_t *secret,const uint8_t *basepoint);
bits256 rawkey;
mysecret.bytes[0] &= 0xf8, mysecret.bytes[31] &= 0x7f, mysecret.bytes[31] |= 0x40;
curve25519_donna(&rawkey.bytes[0],&mysecret.bytes[0],&theirpublic.bytes[0]);
return(rawkey);
}
#endif
// Input: Q, Q', Q-Q' -> Output: 2Q, Q+Q'
// x2 z2: long form && x3 z3: long form
// x z: short form, destroyed && xprime zprime: short form, destroyed
// qmqp: short form, preserved
static inline void force_inline
fmonty(bits320 *x2, bits320 *z2, // output 2Q
bits320 *x3, bits320 *z3, // output Q + Q'
bits320 *x, bits320 *z, // input Q
bits320 *xprime, bits320 *zprime, // input Q'
const bits320 qmqp) // input Q - Q'
{
bits320 origx,origxprime,zzz,xx,zz,xxprime,zzprime;
origx = *x;
*x = fsum(*x,*z), fdifference_backwards(z->ulongs,origx.ulongs); // does x - z
origxprime = *xprime;
*xprime = fsum(*xprime,*zprime), fdifference_backwards(zprime->ulongs,origxprime.ulongs);
xxprime = fmul(*xprime,*z), zzprime = fmul(*x,*zprime);
origxprime = xxprime;
xxprime = fsum(xxprime,zzprime), fdifference_backwards(zzprime.ulongs,origxprime.ulongs);
*x3 = fsquare_times(xxprime,1), *z3 = fmul(fsquare_times(zzprime,1),qmqp);
xx = fsquare_times(*x,1), zz = fsquare_times(*z,1);
*x2 = fmul(xx,zz);
fdifference_backwards(zz.ulongs,xx.ulongs); // does zz = xx - zz
zzz = fscalar_product(zz,121665);
*z2 = fmul(zz,fsum(zzz,xx));
}
// -----------------------------------------------------------------------------
// Maybe swap the contents of two limb arrays (@a and @b), each @len elements
// long. Perform the swap iff @swap is non-zero.
// This function performs the swap without leaking any side-channel information.
// -----------------------------------------------------------------------------
static inline void force_inline swap_conditional(bits320 *a,bits320 *b,uint64_t iswap)
{
int32_t i; const uint64_t swap = -iswap;
for (i=0; i<5; ++i)
{
const uint64_t x = swap & (a->ulongs[i] ^ b->ulongs[i]);
a->ulongs[i] ^= x, b->ulongs[i] ^= x;
}
}
// Calculates nQ where Q is the x-coordinate of a point on the curve
// resultx/resultz: the x coordinate of the resulting curve point (short form)
// n: a little endian, 32-byte number
// q: a point of the curve (short form)
void cmult(bits320 *resultx,bits320 *resultz,bits256 secret,const bits320 q)
{
int32_t i,j; bits320 a,b,c,d,e,f,g,h,*t;
bits320 Zero320bits,One320bits, *nqpqx = &a,*nqpqz = &b,*nqx = &c,*nqz = &d,*nqpqx2 = &e,*nqpqz2 = &f,*nqx2 = &g,*nqz2 = &h;
memset(&Zero320bits,0,sizeof(Zero320bits));
memset(&One320bits,0,sizeof(One320bits)), One320bits.ulongs[0] = 1;
a = d = e = g = Zero320bits, b = c = f = h = One320bits;
*nqpqx = q;
for (i=0; i<32; i++)
{
uint8_t byte = secret.bytes[31 - i];
for (j=0; j<8; j++)
{
const uint64_t bit = byte >> 7;
swap_conditional(nqx,nqpqx,bit), swap_conditional(nqz,nqpqz,bit);
fmonty(nqx2,nqz2,nqpqx2,nqpqz2,nqx,nqz,nqpqx,nqpqz,q);
swap_conditional(nqx2,nqpqx2,bit), swap_conditional(nqz2,nqpqz2,bit);
t = nqx, nqx = nqx2, nqx2 = t;
t = nqz, nqz = nqz2, nqz2 = t;
t = nqpqx, nqpqx = nqpqx2, nqpqx2 = t;
t = nqpqz, nqpqz = nqpqz2, nqpqz2 = t;
byte <<= 1;
}
}
*resultx = *nqx, *resultz = *nqz;
}
// Shamelessly copied from donna's code that copied djb's code, changed a little
inline bits320 force_inline crecip(const bits320 z)
{
bits320 a,t0,b,c;
/* 2 */ a = fsquare_times(z, 1); // a = 2
/* 8 */ t0 = fsquare_times(a, 2);
/* 9 */ b = fmul(t0, z); // b = 9
/* 11 */ a = fmul(b, a); // a = 11
/* 22 */ t0 = fsquare_times(a, 1);
/* 2^5 - 2^0 = 31 */ b = fmul(t0, b);
/* 2^10 - 2^5 */ t0 = fsquare_times(b, 5);
/* 2^10 - 2^0 */ b = fmul(t0, b);
/* 2^20 - 2^10 */ t0 = fsquare_times(b, 10);
/* 2^20 - 2^0 */ c = fmul(t0, b);
/* 2^40 - 2^20 */ t0 = fsquare_times(c, 20);
/* 2^40 - 2^0 */ t0 = fmul(t0, c);
/* 2^50 - 2^10 */ t0 = fsquare_times(t0, 10);
/* 2^50 - 2^0 */ b = fmul(t0, b);
/* 2^100 - 2^50 */ t0 = fsquare_times(b, 50);
/* 2^100 - 2^0 */ c = fmul(t0, b);
/* 2^200 - 2^100 */ t0 = fsquare_times(c, 100);
/* 2^200 - 2^0 */ t0 = fmul(t0, c);
/* 2^250 - 2^50 */ t0 = fsquare_times(t0, 50);
/* 2^250 - 2^0 */ t0 = fmul(t0, b);
/* 2^255 - 2^5 */ t0 = fsquare_times(t0, 5);
/* 2^255 - 21 */ return(fmul(t0, a));
}
void OS_randombytes(unsigned char *x,long xlen);
bits256 rand256(int32_t privkeyflag)
{
bits256 randval;
OS_randombytes(randval.bytes,sizeof(randval));
if ( privkeyflag != 0 )
randval.bytes[0] &= 0xf8, randval.bytes[31] &= 0x7f, randval.bytes[31] |= 0x40;
return(randval);
}
bits256 curve25519_basepoint9()
{
bits256 basepoint;
memset(&basepoint,0,sizeof(basepoint));
basepoint.bytes[0] = 9;
return(basepoint);
}
bits256 curve25519_keypair(bits256 *pubkeyp)
{
bits256 privkey;
privkey = rand256(1);
*pubkeyp = curve25519(privkey,curve25519_basepoint9());
//printf("[%llx %llx] ",privkey.txid,(*pubkeyp).txid);
return(privkey);
}
// following is ported from libtom
#define STORE32L(x, y) \
{ (y)[3] = (uint8_t)(((x)>>24)&255); (y)[2] = (uint8_t)(((x)>>16)&255); \
(y)[1] = (uint8_t)(((x)>>8)&255); (y)[0] = (uint8_t)((x)&255); }
#define LOAD32L(x, y) \
{ x = (uint32_t)(((uint64_t)((y)[3] & 255)<<24) | \
((uint32_t)((y)[2] & 255)<<16) | \
((uint32_t)((y)[1] & 255)<<8) | \
((uint32_t)((y)[0] & 255))); }
#define STORE64L(x, y) \
{ (y)[7] = (uint8_t)(((x)>>56)&255); (y)[6] = (uint8_t)(((x)>>48)&255); \
(y)[5] = (uint8_t)(((x)>>40)&255); (y)[4] = (uint8_t)(((x)>>32)&255); \
(y)[3] = (uint8_t)(((x)>>24)&255); (y)[2] = (uint8_t)(((x)>>16)&255); \
(y)[1] = (uint8_t)(((x)>>8)&255); (y)[0] = (uint8_t)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((uint64_t)((y)[7] & 255))<<56)|(((uint64_t)((y)[6] & 255))<<48)| \
(((uint64_t)((y)[5] & 255))<<40)|(((uint64_t)((y)[4] & 255))<<32)| \
(((uint64_t)((y)[3] & 255))<<24)|(((uint64_t)((y)[2] & 255))<<16)| \
(((uint64_t)((y)[1] & 255))<<8)|(((uint64_t)((y)[0] & 255))); }
#define STORE32H(x, y) \
{ (y)[0] = (uint8_t)(((x)>>24)&255); (y)[1] = (uint8_t)(((x)>>16)&255); \
(y)[2] = (uint8_t)(((x)>>8)&255); (y)[3] = (uint8_t)((x)&255); }
#define LOAD32H(x, y) \
{ x = (uint32_t)(((uint64_t)((y)[0] & 255)<<24) | \
((uint32_t)((y)[1] & 255)<<16) | \
((uint32_t)((y)[2] & 255)<<8) | \
((uint32_t)((y)[3] & 255))); }
#define STORE64H(x, y) \
{ (y)[0] = (uint8_t)(((x)>>56)&255); (y)[1] = (uint8_t)(((x)>>48)&255); \
(y)[2] = (uint8_t)(((x)>>40)&255); (y)[3] = (uint8_t)(((x)>>32)&255); \
(y)[4] = (uint8_t)(((x)>>24)&255); (y)[5] = (uint8_t)(((x)>>16)&255); \
(y)[6] = (uint8_t)(((x)>>8)&255); (y)[7] = (uint8_t)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \
(((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \
(((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \
(((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); }
// Various logical functions
#define RORc(x, y) ( ((((uint32_t)(x)&0xFFFFFFFFUL)>>(uint32_t)((y)&31)) | ((uint32_t)(x)<<(uint32_t)(32-((y)&31)))) & 0xFFFFFFFFUL)
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) RORc((x),(n))
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
static inline int32_t sha256_vcompress(struct sha256_vstate * md,uint8_t *buf)
{
uint32_t S[8],W[64],t0,t1,i;
for (i=0; i<8; i++) // copy state into S
S[i] = md->state[i];
for (i=0; i<16; i++) // copy the state into 512-bits into W[0..15]
LOAD32H(W[i],buf + (4*i));
for (i=16; i<64; i++) // fill W[16..63]
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
#define RND(a,b,c,d,e,f,g,h,i,ki) \
t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
#undef RND
for (i=0; i<8; i++) // feedback
md->state[i] = md->state[i] + S[i];
return(0);
}
#undef RORc
#undef Ch
#undef Maj
#undef S
#undef R
#undef Sigma0
#undef Sigma1
#undef Gamma0
#undef Gamma1
static inline void sha256_vinit(struct sha256_vstate * md)
{
md->curlen = 0;
md->length = 0;
md->state[0] = 0x6A09E667UL;
md->state[1] = 0xBB67AE85UL;
md->state[2] = 0x3C6EF372UL;
md->state[3] = 0xA54FF53AUL;
md->state[4] = 0x510E527FUL;
md->state[5] = 0x9B05688CUL;
md->state[6] = 0x1F83D9ABUL;
md->state[7] = 0x5BE0CD19UL;
}
static inline int32_t sha256_vprocess(struct sha256_vstate *md,const uint8_t *in,uint64_t inlen)
{
uint64_t n; int32_t err;
if ( md->curlen > sizeof(md->buf) )
return(-1);
while ( inlen > 0 )
{
if ( md->curlen == 0 && inlen >= 64 )
{
if ( (err= sha256_vcompress(md,(uint8_t *)in)) != 0 )
return(err);
md->length += 64 * 8, in += 64, inlen -= 64;
}
else
{
n = MIN(inlen,64 - md->curlen);
memcpy(md->buf + md->curlen,in,(size_t)n);
md->curlen += n, in += n, inlen -= n;
if ( md->curlen == 64 )
{
if ( (err= sha256_vcompress(md,md->buf)) != 0 )
return(err);
md->length += 8*64;
md->curlen = 0;
}
}
}
return(0);
}
static inline int32_t sha256_vdone(struct sha256_vstate *md,uint8_t *out)
{
int32_t i;
if ( md->curlen >= sizeof(md->buf) )
return(-1);
md->length += md->curlen * 8; // increase the length of the message
md->buf[md->curlen++] = (uint8_t)0x80; // append the '1' bit
// if len > 56 bytes we append zeros then compress. Then we can fall back to padding zeros and length encoding like normal.
if ( md->curlen > 56 )
{
while ( md->curlen < 64 )
md->buf[md->curlen++] = (uint8_t)0;
sha256_vcompress(md,md->buf);
md->curlen = 0;
}
while ( md->curlen < 56 ) // pad upto 56 bytes of zeroes
md->buf[md->curlen++] = (uint8_t)0;
STORE64H(md->length,md->buf+56); // store length
sha256_vcompress(md,md->buf);
for (i=0; i<8; i++) // copy output
STORE32H(md->state[i],out+(4*i));
return(0);
}
int32_t init_hexbytes_noT(char *hexbytes,uint8_t *message,long len);
void vcalc_sha256(char hashstr[(256 >> 3) * 2 + 1],uint8_t hash[256 >> 3],uint8_t *src,int32_t len)
{
struct sha256_vstate md;
sha256_vinit(&md);
sha256_vprocess(&md,src,len);
sha256_vdone(&md,hash);
if ( hashstr != 0 )
init_hexbytes_noT(hashstr,hash,256 >> 3);
}
void vcalc_sha256cat(uint8_t hash[256 >> 3],uint8_t *src,int32_t len,uint8_t *src2,int32_t len2)
{
struct sha256_vstate md;
sha256_vinit(&md);
sha256_vprocess(&md,src,len);
if ( src2 != 0 )
sha256_vprocess(&md,src2,len2);
sha256_vdone(&md,hash);
}
void vupdate_sha256(uint8_t hash[256 >> 3],struct sha256_vstate *state,uint8_t *src,int32_t len)
{
struct sha256_vstate md;
memset(&md,0,sizeof(md));
if ( src == 0 )
sha256_vinit(&md);
else
{
md = *state;
sha256_vprocess(&md,src,len);
}
*state = md;
sha256_vdone(&md,hash);
}
// rmd160: the five basic functions F(), G() and H()
#define F(x, y, z) ((x) ^ (y) ^ (z))
#define G(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define H(x, y, z) (((x) | ~(y)) ^ (z))
#define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define J(x, y, z) ((x) ^ ((y) | ~(z)))
#define ROLc(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
/* the ten basic operations FF() through III() */
#define FF(a, b, c, d, e, x, s) \
(a) += F((b), (c), (d)) + (x);\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
#define GG(a, b, c, d, e, x, s) \
(a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
#define HH(a, b, c, d, e, x, s) \
(a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
#define II(a, b, c, d, e, x, s) \
(a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
#define JJ(a, b, c, d, e, x, s) \
(a) += J((b), (c), (d)) + (x) + 0xa953fd4eUL;\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
#define FFF(a, b, c, d, e, x, s) \
(a) += F((b), (c), (d)) + (x);\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
#define GGG(a, b, c, d, e, x, s) \
(a) += G((b), (c), (d)) + (x) + 0x7a6d76e9UL;\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
#define HHH(a, b, c, d, e, x, s) \
(a) += H((b), (c), (d)) + (x) + 0x6d703ef3UL;\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
#define III(a, b, c, d, e, x, s) \
(a) += I((b), (c), (d)) + (x) + 0x5c4dd124UL;\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
#define JJJ(a, b, c, d, e, x, s) \
(a) += J((b), (c), (d)) + (x) + 0x50a28be6UL;\
(a) = ROLc((a), (s)) + (e);\
(c) = ROLc((c), 10);
static int32_t rmd160_vcompress(struct rmd160_vstate *md,uint8_t *buf)
{
uint32_t aa,bb,cc,dd,ee,aaa,bbb,ccc,ddd,eee,X[16];
int i;
/* load words X */
for (i = 0; i < 16; i++){
LOAD32L(X[i], buf + (4 * i));
}
/* load state */
aa = aaa = md->state[0];
bb = bbb = md->state[1];
cc = ccc = md->state[2];
dd = ddd = md->state[3];
ee = eee = md->state[4];
/* round 1 */
FF(aa, bb, cc, dd, ee, X[ 0], 11);
FF(ee, aa, bb, cc, dd, X[ 1], 14);
FF(dd, ee, aa, bb, cc, X[ 2], 15);
FF(cc, dd, ee, aa, bb, X[ 3], 12);
FF(bb, cc, dd, ee, aa, X[ 4], 5);
FF(aa, bb, cc, dd, ee, X[ 5], 8);
FF(ee, aa, bb, cc, dd, X[ 6], 7);
FF(dd, ee, aa, bb, cc, X[ 7], 9);
FF(cc, dd, ee, aa, bb, X[ 8], 11);
FF(bb, cc, dd, ee, aa, X[ 9], 13);
FF(aa, bb, cc, dd, ee, X[10], 14);
FF(ee, aa, bb, cc, dd, X[11], 15);
FF(dd, ee, aa, bb, cc, X[12], 6);
FF(cc, dd, ee, aa, bb, X[13], 7);
FF(bb, cc, dd, ee, aa, X[14], 9);
FF(aa, bb, cc, dd, ee, X[15], 8);
/* round 2 */
GG(ee, aa, bb, cc, dd, X[ 7], 7);
GG(dd, ee, aa, bb, cc, X[ 4], 6);
GG(cc, dd, ee, aa, bb, X[13], 8);
GG(bb, cc, dd, ee, aa, X[ 1], 13);
GG(aa, bb, cc, dd, ee, X[10], 11);
GG(ee, aa, bb, cc, dd, X[ 6], 9);
GG(dd, ee, aa, bb, cc, X[15], 7);
GG(cc, dd, ee, aa, bb, X[ 3], 15);
GG(bb, cc, dd, ee, aa, X[12], 7);
GG(aa, bb, cc, dd, ee, X[ 0], 12);
GG(ee, aa, bb, cc, dd, X[ 9], 15);
GG(dd, ee, aa, bb, cc, X[ 5], 9);
GG(cc, dd, ee, aa, bb, X[ 2], 11);
GG(bb, cc, dd, ee, aa, X[14], 7);
GG(aa, bb, cc, dd, ee, X[11], 13);
GG(ee, aa, bb, cc, dd, X[ 8], 12);
/* round 3 */
HH(dd, ee, aa, bb, cc, X[ 3], 11);
HH(cc, dd, ee, aa, bb, X[10], 13);
HH(bb, cc, dd, ee, aa, X[14], 6);
HH(aa, bb, cc, dd, ee, X[ 4], 7);
HH(ee, aa, bb, cc, dd, X[ 9], 14);
HH(dd, ee, aa, bb, cc, X[15], 9);
HH(cc, dd, ee, aa, bb, X[ 8], 13);
HH(bb, cc, dd, ee, aa, X[ 1], 15);
HH(aa, bb, cc, dd, ee, X[ 2], 14);
HH(ee, aa, bb, cc, dd, X[ 7], 8);
HH(dd, ee, aa, bb, cc, X[ 0], 13);
HH(cc, dd, ee, aa, bb, X[ 6], 6);
HH(bb, cc, dd, ee, aa, X[13], 5);
HH(aa, bb, cc, dd, ee, X[11], 12);
HH(ee, aa, bb, cc, dd, X[ 5], 7);
HH(dd, ee, aa, bb, cc, X[12], 5);
/* round 4 */
II(cc, dd, ee, aa, bb, X[ 1], 11);
II(bb, cc, dd, ee, aa, X[ 9], 12);
II(aa, bb, cc, dd, ee, X[11], 14);
II(ee, aa, bb, cc, dd, X[10], 15);
II(dd, ee, aa, bb, cc, X[ 0], 14);
II(cc, dd, ee, aa, bb, X[ 8], 15);
II(bb, cc, dd, ee, aa, X[12], 9);
II(aa, bb, cc, dd, ee, X[ 4], 8);
II(ee, aa, bb, cc, dd, X[13], 9);
II(dd, ee, aa, bb, cc, X[ 3], 14);
II(cc, dd, ee, aa, bb, X[ 7], 5);
II(bb, cc, dd, ee, aa, X[15], 6);
II(aa, bb, cc, dd, ee, X[14], 8);
II(ee, aa, bb, cc, dd, X[ 5], 6);
II(dd, ee, aa, bb, cc, X[ 6], 5);
II(cc, dd, ee, aa, bb, X[ 2], 12);
/* round 5 */
JJ(bb, cc, dd, ee, aa, X[ 4], 9);
JJ(aa, bb, cc, dd, ee, X[ 0], 15);
JJ(ee, aa, bb, cc, dd, X[ 5], 5);
JJ(dd, ee, aa, bb, cc, X[ 9], 11);
JJ(cc, dd, ee, aa, bb, X[ 7], 6);
JJ(bb, cc, dd, ee, aa, X[12], 8);
JJ(aa, bb, cc, dd, ee, X[ 2], 13);
JJ(ee, aa, bb, cc, dd, X[10], 12);
JJ(dd, ee, aa, bb, cc, X[14], 5);
JJ(cc, dd, ee, aa, bb, X[ 1], 12);
JJ(bb, cc, dd, ee, aa, X[ 3], 13);
JJ(aa, bb, cc, dd, ee, X[ 8], 14);
JJ(ee, aa, bb, cc, dd, X[11], 11);
JJ(dd, ee, aa, bb, cc, X[ 6], 8);
JJ(cc, dd, ee, aa, bb, X[15], 5);
JJ(bb, cc, dd, ee, aa, X[13], 6);
/* parallel round 1 */
JJJ(aaa, bbb, ccc, ddd, eee, X[ 5], 8);
JJJ(eee, aaa, bbb, ccc, ddd, X[14], 9);
JJJ(ddd, eee, aaa, bbb, ccc, X[ 7], 9);
JJJ(ccc, ddd, eee, aaa, bbb, X[ 0], 11);
JJJ(bbb, ccc, ddd, eee, aaa, X[ 9], 13);
JJJ(aaa, bbb, ccc, ddd, eee, X[ 2], 15);
JJJ(eee, aaa, bbb, ccc, ddd, X[11], 15);
JJJ(ddd, eee, aaa, bbb, ccc, X[ 4], 5);
JJJ(ccc, ddd, eee, aaa, bbb, X[13], 7);
JJJ(bbb, ccc, ddd, eee, aaa, X[ 6], 7);
JJJ(aaa, bbb, ccc, ddd, eee, X[15], 8);
JJJ(eee, aaa, bbb, ccc, ddd, X[ 8], 11);
JJJ(ddd, eee, aaa, bbb, ccc, X[ 1], 14);
JJJ(ccc, ddd, eee, aaa, bbb, X[10], 14);
JJJ(bbb, ccc, ddd, eee, aaa, X[ 3], 12);
JJJ(aaa, bbb, ccc, ddd, eee, X[12], 6);
/* parallel round 2 */
III(eee, aaa, bbb, ccc, ddd, X[ 6], 9);
III(ddd, eee, aaa, bbb, ccc, X[11], 13);
III(ccc, ddd, eee, aaa, bbb, X[ 3], 15);
III(bbb, ccc, ddd, eee, aaa, X[ 7], 7);
III(aaa, bbb, ccc, ddd, eee, X[ 0], 12);
III(eee, aaa, bbb, ccc, ddd, X[13], 8);
III(ddd, eee, aaa, bbb, ccc, X[ 5], 9);
III(ccc, ddd, eee, aaa, bbb, X[10], 11);
III(bbb, ccc, ddd, eee, aaa, X[14], 7);
III(aaa, bbb, ccc, ddd, eee, X[15], 7);
III(eee, aaa, bbb, ccc, ddd, X[ 8], 12);
III(ddd, eee, aaa, bbb, ccc, X[12], 7);
III(ccc, ddd, eee, aaa, bbb, X[ 4], 6);
III(bbb, ccc, ddd, eee, aaa, X[ 9], 15);
III(aaa, bbb, ccc, ddd, eee, X[ 1], 13);
III(eee, aaa, bbb, ccc, ddd, X[ 2], 11);
/* parallel round 3 */
HHH(ddd, eee, aaa, bbb, ccc, X[15], 9);
HHH(ccc, ddd, eee, aaa, bbb, X[ 5], 7);
HHH(bbb, ccc, ddd, eee, aaa, X[ 1], 15);
HHH(aaa, bbb, ccc, ddd, eee, X[ 3], 11);
HHH(eee, aaa, bbb, ccc, ddd, X[ 7], 8);
HHH(ddd, eee, aaa, bbb, ccc, X[14], 6);
HHH(ccc, ddd, eee, aaa, bbb, X[ 6], 6);
HHH(bbb, ccc, ddd, eee, aaa, X[ 9], 14);
HHH(aaa, bbb, ccc, ddd, eee, X[11], 12);
HHH(eee, aaa, bbb, ccc, ddd, X[ 8], 13);
HHH(ddd, eee, aaa, bbb, ccc, X[12], 5);
HHH(ccc, ddd, eee, aaa, bbb, X[ 2], 14);
HHH(bbb, ccc, ddd, eee, aaa, X[10], 13);
HHH(aaa, bbb, ccc, ddd, eee, X[ 0], 13);
HHH(eee, aaa, bbb, ccc, ddd, X[ 4], 7);
HHH(ddd, eee, aaa, bbb, ccc, X[13], 5);
/* parallel round 4 */
GGG(ccc, ddd, eee, aaa, bbb, X[ 8], 15);
GGG(bbb, ccc, ddd, eee, aaa, X[ 6], 5);
GGG(aaa, bbb, ccc, ddd, eee, X[ 4], 8);
GGG(eee, aaa, bbb, ccc, ddd, X[ 1], 11);
GGG(ddd, eee, aaa, bbb, ccc, X[ 3], 14);
GGG(ccc, ddd, eee, aaa, bbb, X[11], 14);
GGG(bbb, ccc, ddd, eee, aaa, X[15], 6);
GGG(aaa, bbb, ccc, ddd, eee, X[ 0], 14);
GGG(eee, aaa, bbb, ccc, ddd, X[ 5], 6);
GGG(ddd, eee, aaa, bbb, ccc, X[12], 9);
GGG(ccc, ddd, eee, aaa, bbb, X[ 2], 12);
GGG(bbb, ccc, ddd, eee, aaa, X[13], 9);
GGG(aaa, bbb, ccc, ddd, eee, X[ 9], 12);
GGG(eee, aaa, bbb, ccc, ddd, X[ 7], 5);
GGG(ddd, eee, aaa, bbb, ccc, X[10], 15);
GGG(ccc, ddd, eee, aaa, bbb, X[14], 8);
/* parallel round 5 */
FFF(bbb, ccc, ddd, eee, aaa, X[12] , 8);
FFF(aaa, bbb, ccc, ddd, eee, X[15] , 5);
FFF(eee, aaa, bbb, ccc, ddd, X[10] , 12);
FFF(ddd, eee, aaa, bbb, ccc, X[ 4] , 9);
FFF(ccc, ddd, eee, aaa, bbb, X[ 1] , 12);
FFF(bbb, ccc, ddd, eee, aaa, X[ 5] , 5);
FFF(aaa, bbb, ccc, ddd, eee, X[ 8] , 14);
FFF(eee, aaa, bbb, ccc, ddd, X[ 7] , 6);
FFF(ddd, eee, aaa, bbb, ccc, X[ 6] , 8);
FFF(ccc, ddd, eee, aaa, bbb, X[ 2] , 13);
FFF(bbb, ccc, ddd, eee, aaa, X[13] , 6);
FFF(aaa, bbb, ccc, ddd, eee, X[14] , 5);
FFF(eee, aaa, bbb, ccc, ddd, X[ 0] , 15);
FFF(ddd, eee, aaa, bbb, ccc, X[ 3] , 13);
FFF(ccc, ddd, eee, aaa, bbb, X[ 9] , 11);
FFF(bbb, ccc, ddd, eee, aaa, X[11] , 11);
/* combine results */
ddd += cc + md->state[1]; /* final result for md->state[0] */
md->state[1] = md->state[2] + dd + eee;
md->state[2] = md->state[3] + ee + aaa;
md->state[3] = md->state[4] + aa + bbb;
md->state[4] = md->state[0] + bb + ccc;
md->state[0] = ddd;
return 0;
}
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return 0 if successful
*/
int rmd160_vinit(struct rmd160_vstate * md)
{
md->state[0] = 0x67452301UL;
md->state[1] = 0xefcdab89UL;
md->state[2] = 0x98badcfeUL;
md->state[3] = 0x10325476UL;
md->state[4] = 0xc3d2e1f0UL;
md->curlen = 0;
md->length = 0;
return 0;
}
#define HASH_PROCESS(func_name, compress_name, state_var, block_size) \
int func_name (struct rmd160_vstate * md, const unsigned char *in, unsigned long inlen) \
{ \
unsigned long n; \
int err; \
if (md->curlen > sizeof(md->buf)) { \
return -1; \
} \
while (inlen > 0) { \
if (md->curlen == 0 && inlen >= block_size) { \
if ((err = compress_name (md, (unsigned char *)in)) != 0) { \
return err; \
} \
md->length += block_size * 8; \
in += block_size; \
inlen -= block_size; \
} else { \
n = MIN(inlen, (block_size - md->curlen)); \
memcpy(md->buf + md->curlen, in, (size_t)n); \
md->curlen += n; \
in += n; \
inlen -= n; \
if (md->curlen == block_size) { \
if ((err = compress_name (md, md->buf)) != 0) { \
return err; \
} \
md->length += 8*block_size; \
md->curlen = 0; \
} \
} \
} \
return 0; \
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return 0 if successful
*/
HASH_PROCESS(rmd160_vprocess, rmd160_vcompress, rmd160, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (20 bytes)
@return 0 if successful
*/
int rmd160_vdone(struct rmd160_vstate * md, unsigned char *out)
{
int i;
if (md->curlen >= sizeof(md->buf)) {
return -1;
}
/* increase the length of the message */
md->length += md->curlen * 8;
/* append the '1' bit */
md->buf[md->curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->curlen > 56) {
while (md->curlen < 64) {
md->buf[md->curlen++] = (unsigned char)0;
}
rmd160_vcompress(md, md->buf);
md->curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->curlen < 56) {
md->buf[md->curlen++] = (unsigned char)0;
}
/* store length */
STORE64L(md->length, md->buf+56);
rmd160_vcompress(md, md->buf);
/* copy output */
for (i = 0; i < 5; i++) {
STORE32L(md->state[i], out+(4*i));
}
return 0;
}
void calc_rmd160(char hexstr[41],uint8_t buf[20],uint8_t *msg,int32_t len)
{
struct rmd160_vstate md;
rmd160_vinit(&md);
rmd160_vprocess(&md,msg,len);
rmd160_vdone(&md, buf);
if ( hexstr != 0 )
init_hexbytes_noT(hexstr,buf,20);
}
#ifdef ENABLE_RMDTEST
int rmd160_test(void)
{
static const struct {
char *msg;
unsigned char md[20];
} tests[] = {
{ "",
{ 0x9c, 0x11, 0x85, 0xa5, 0xc5, 0xe9, 0xfc, 0x54, 0x61, 0x28,
0x08, 0x97, 0x7e, 0xe8, 0xf5, 0x48, 0xb2, 0x25, 0x8d, 0x31 }
},
{ "a",
{ 0x0b, 0xdc, 0x9d, 0x2d, 0x25, 0x6b, 0x3e, 0xe9, 0xda, 0xae,
0x34, 0x7b, 0xe6, 0xf4, 0xdc, 0x83, 0x5a, 0x46, 0x7f, 0xfe }
},
{ "abc",
{ 0x8e, 0xb2, 0x08, 0xf7, 0xe0, 0x5d, 0x98, 0x7a, 0x9b, 0x04,
0x4a, 0x8e, 0x98, 0xc6, 0xb0, 0x87, 0xf1, 0x5a, 0x0b, 0xfc }
},
{ "message digest",
{ 0x5d, 0x06, 0x89, 0xef, 0x49, 0xd2, 0xfa, 0xe5, 0x72, 0xb8,
0x81, 0xb1, 0x23, 0xa8, 0x5f, 0xfa, 0x21, 0x59, 0x5f, 0x36 }
},
{ "abcdefghijklmnopqrstuvwxyz",
{ 0xf7, 0x1c, 0x27, 0x10, 0x9c, 0x69, 0x2c, 0x1b, 0x56, 0xbb,
0xdc, 0xeb, 0x5b, 0x9d, 0x28, 0x65, 0xb3, 0x70, 0x8d, 0xbc }
},
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{ 0x12, 0xa0, 0x53, 0x38, 0x4a, 0x9c, 0x0c, 0x88, 0xe4, 0x05,
0xa0, 0x6c, 0x27, 0xdc, 0xf4, 0x9a, 0xda, 0x62, 0xeb, 0x2b }
}
};
int x;
unsigned char buf[20]; char hexstr[41];
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
calc_rmd160(hexstr,buf,(unsigned char *)tests[x].msg,(int32_t) strlen(tests[x].msg));
if (memcmp(buf, tests[x].md, 20) != 0) {
printf("Failed test %d\n", x);
return -1;
}
else printf("rmd160(%s) -> (%s)\n",tests[x].msg,hexstr);
}
return 0;
}
#endif
#undef FF
#undef GG
#undef HH
#undef II
#undef FFF
#undef GGG
#undef HHH
#undef III
#undef F
#undef G
#undef H
#undef I
#undef J
#undef ROLc
static const uint32_t crc32_tab[] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
uint32_t calc_crc32(uint32_t crc,const void *buf,size_t size)
{
const uint8_t *p;
p = (const uint8_t *)buf;
crc = crc ^ ~0U;
while (size--)
crc = crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
return crc ^ ~0U;
}
bits256 curve25519_shared(bits256 privkey,bits256 otherpub)
{
bits256 shared,hash;
shared = curve25519(privkey,otherpub);
vcalc_sha256(0,hash.bytes,shared.bytes,sizeof(shared));
//printf("priv.%llx pub.%llx shared.%llx -> hash.%llx\n",privkey.txid,pubkey.txid,shared.txid,hash.txid);
//hash.bytes[0] &= 0xf8, hash.bytes[31] &= 0x7f, hash.bytes[31] |= 64;
return(hash);
}
int32_t curve25519_donna(uint8_t *mypublic,const uint8_t *secret,const uint8_t *basepoint);
/*{
bits256 val,p,bp;
memcpy(p.bytes,secret,sizeof(p));
memcpy(bp.bytes,basepoint,sizeof(bp));
val = curve25519(p,bp);
memcpy(mypublic,val.bytes,sizeof(val));
return(0);
}*/
uint64_t conv_NXTpassword(unsigned char *mysecret,unsigned char *mypublic,uint8_t *pass,int32_t passlen)
{
static uint8_t basepoint[32] = {9};
uint64_t addr; uint8_t hash[32];
if ( pass != 0 && passlen != 0 )
vcalc_sha256(0,mysecret,pass,passlen);
mysecret[0] &= 248, mysecret[31] &= 127, mysecret[31] |= 64;
curve25519_donna(mypublic,mysecret,basepoint);
vcalc_sha256(0,hash,mypublic,32);
memcpy(&addr,hash,sizeof(addr));
return(addr);
}
#include <stdio.h>
bits256 GENESIS_PUBKEY,GENESIS_PRIVKEY;
bits256 acct777_pubkey(bits256 privkey)
{
static uint8_t basepoint[32] = {9};
bits256 pubkey;
privkey.bytes[0] &= 248, privkey.bytes[31] &= 127, privkey.bytes[31] |= 64;
curve25519_donna(pubkey.bytes,privkey.bytes,basepoint);
return(pubkey);
}
uint64_t acct777_nxt64bits(bits256 pubkey)
{
bits256 acct;
vcalc_sha256(0,acct.bytes,pubkey.bytes,sizeof(pubkey));
return(acct.txid);
}
bits256 acct777_hashiter(bits256 privkey,bits256 pubkey,int32_t lockdays,uint8_t chainlen)
{
uint16_t lockseed,signlen = 0; uint8_t signbuf[16]; bits256 shared,lockhash;
lockseed = (chainlen & 0x7f) | (lockdays << 7);
signlen = 0, signbuf[signlen++] = lockseed & 0xff, signbuf[signlen++] = (lockseed >> 8) & 0xff;
privkey.bytes[0] &= 248, privkey.bytes[31] &= 127, privkey.bytes[31] |= 64;
shared = curve25519(privkey,pubkey);
vcalc_sha256cat(lockhash.bytes,shared.bytes,sizeof(shared),signbuf,signlen);
return(lockhash);
}
bits256 acct777_lockhash(bits256 pubkey,int32_t lockdays,uint8_t chainlen)
{
bits256 lockhash = GENESIS_PRIVKEY;
while ( chainlen > 0 )
lockhash = acct777_hashiter(lockhash,pubkey,lockdays,chainlen--);
return(lockhash);
}
bits256 acct777_invoicehash(bits256 *invoicehash,uint16_t lockdays,uint8_t chainlen)
{
int32_t i; bits256 lockhash,privkey;
OS_randombytes(privkey.bytes,sizeof(privkey)); // both privkey and pubkey are sensitive. pubkey allows verification, privkey proves owner
lockhash = privkey;
for (i=0; i<chainlen; i++)
lockhash = acct777_hashiter(lockhash,GENESIS_PUBKEY,chainlen - i,lockdays);
*invoicehash = lockhash;
return(privkey);
}
uint64_t acct777_sign(struct acct777_sig *sig,bits256 privkey,bits256 otherpubkey,uint32_t timestamp,uint8_t *data,int32_t datalen)
{
int32_t i; bits256 shared; uint8_t buf[sizeof(shared) + sizeof(timestamp)]; uint32_t t = timestamp;
for (i=0; i<sizeof(t); i++,t>>=8)
buf[i] = (t & 0xff);
sig->timestamp = timestamp;
shared = curve25519(privkey,otherpubkey);
memcpy(&buf[sizeof(timestamp)],shared.bytes,sizeof(shared));
vcalc_sha256cat(sig->sigbits.bytes,buf,sizeof(buf),data,datalen);
sig->pubkey = acct777_pubkey(privkey), sig->signer64bits = acct777_nxt64bits(sig->pubkey);
//printf(" calcsig.%llx pubkey.%llx signer.%llu | t%u crc.%08x len.%d shared.%llx <- %llx * %llx\n",(long long)sig->sigbits.txid,(long long)sig->pubkey.txid,(long long)sig->signer64bits,timestamp,_crc32(0,data,datalen),datalen,(long long)shared.txid,(long long)privkey.txid,(long long)otherpubkey.txid);
return(sig->signer64bits);
}
uint64_t acct777_validate(struct acct777_sig *sig,uint32_t timestamp,uint8_t *data,int32_t datalen)
{
struct acct777_sig checksig;
acct777_sign(&checksig,GENESIS_PRIVKEY,sig->pubkey,timestamp,data,datalen);
if ( memcmp(checksig.sigbits.bytes,sig->sigbits.bytes,sizeof(checksig.sigbits)) != 0 )
{
printf("sig compare error using sig->pub from %llu\n",(long long)acct777_nxt64bits(sig->pubkey));
return(0);
}
return(acct777_nxt64bits(sig->pubkey));
}
uint64_t acct777_signtx(struct acct777_sig *sig,bits256 privkey,uint32_t timestamp,uint8_t *data,int32_t datalen)
{
return(acct777_sign(sig,privkey,GENESIS_PUBKEY,timestamp,data,datalen));
}
uint64_t acct777_swaptx(bits256 privkey,struct acct777_sig *sig,uint32_t timestamp,uint8_t *data,int32_t datalen)
{
uint64_t othernxt;
if ( (othernxt= acct777_validate(sig,timestamp,data,datalen)) != sig->signer64bits )
return(0);
return(acct777_sign(sig,privkey,GENESIS_PUBKEY,timestamp,data,datalen));
}
#undef force_inline