You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2568 lines
102 KiB

/******************************************************************************
* Copyright © 2014-2016 The SuperNET Developers. *
* *
* See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at *
* the top-level directory of this distribution for the individual copyright *
* holder information and the developer policies on copyright and licensing. *
* *
* Unless otherwise agreed in a custom licensing agreement, no part of the *
* SuperNET software, including this file may be copied, modified, propagated *
* or distributed except according to the terms contained in the LICENSE file *
* *
* Removal or modification of this copyright notice is prohibited. *
* *
******************************************************************************/
#include "iguana777.h"
#include "exchanges/bitcoin.h"
#include "mini-gmp.h"
#define MAX_SCRIPT_ELEMENT_SIZE 520
#define MAX_OPS_PER_SCRIPT 201 // Maximum number of non-push operations per script
#define MAX_PUBKEYS_PER_MULTISIG 20 // Maximum number of public keys per multisig
#define IGUANA_MAXSTACKITEMS ((int32_t)(IGUANA_MAXSCRIPTSIZE / sizeof(uint32_t)))
#define IGUANA_MAXSTACKDEPTH 128
#define IGUANA_OP_0 0x00
#define IGUANA_OP_PUSHDATA1 0x4c
#define IGUANA_OP_PUSHDATA2 0x4d
#define IGUANA_OP_PUSHDATA4 0x4e
#define IGUANA_OP_1NEGATE 0x4f
#define IGUANA_OP_1 0x51
#define IGUANA_OP_16 0x60
#define IGUANA_OP_NOP 0x61
#define IGUANA_OP_IF 0x63
#define IGUANA_OP_NOTIF 0x64
#define IGUANA_OP_ELSE 0x67
#define IGUANA_OP_ENDIF 0x68
#define IGUANA_OP_VERIFY 0x69
#define IGUANA_OP_RETURN 0x6a
#define IGUANA_OP_TOALTSTACK 0x6b
#define IGUANA_OP_FROMALTSTACK 0x6c
#define IGUANA_OP_2DROP 0x6d
#define IGUANA_OP_2DUP 0x6e
#define IGUANA_OP_3DUP 0x6f
#define IGUANA_OP_2OVER 0x70
#define IGUANA_OP_2ROT 0x71
#define IGUANA_OP_2SWAP 0x72
#define IGUANA_OP_IFDUP 0x73
#define IGUANA_OP_DEPTH 0x74
#define IGUANA_OP_DROP 0x75
#define IGUANA_OP_DUP 0x76
#define IGUANA_OP_NIP 0x77
#define IGUANA_OP_OVER 0x78
#define IGUANA_OP_PICK 0x79
#define IGUANA_OP_ROLL 0x7a
#define IGUANA_OP_ROT 0x7b
#define IGUANA_OP_SWAP 0x7c
#define IGUANA_OP_TUCK 0x7d
#define IGUANA_OP_EQUAL 0x87
#define IGUANA_OP_EQUALVERIFY 0x88
#define IGUANA_OP_1ADD 0x8b
#define IGUANA_OP_1SUB 0x8c
#define IGUANA_OP_NEGATE 0x8f
#define IGUANA_OP_ABS 0x90
#define IGUANA_OP_NOT 0x91
#define IGUANA_OP_0NOTEQUAL 0x92
#define IGUANA_OP_ADD 0x93
#define IGUANA_OP_SUB 0x94
#define IGUANA_OP_BOOLAND 0x9a
#define IGUANA_OP_BOOLOR 0x9b
#define IGUANA_OP_NUMEQUAL 0x9c
#define IGUANA_OP_NUMEQUALVERIFY 0x9d
#define IGUANA_OP_NUMNOTEQUAL 0x9e
#define IGUANA_OP_LESSTHAN 0x9f
#define IGUANA_OP_GREATERTHAN 0xa0
#define IGUANA_OP_LESSTHANOREQUAL 0xa1
#define IGUANA_OP_GREATERTHANOREQUAL 0xa2
#define IGUANA_OP_MIN 0xa3
#define IGUANA_OP_MAX 0xa4
#define IGUANA_OP_WITHIN 0xa5
#define IGUANA_OP_RIPEMD160 0xa6
#define IGUANA_OP_SHA1 0xa7
#define IGUANA_OP_SHA256 0xa8
#define IGUANA_OP_HASH160 0xa9
#define IGUANA_OP_HASH256 0xaa
#define IGUANA_OP_CODESEPARATOR 0xab
#define IGUANA_OP_CHECKSIG 0xac
#define IGUANA_OP_CHECKSIGVERIFY 0xad
#define IGUANA_OP_CHECKMULTISIG 0xae
#define IGUANA_OP_CHECKMULTISIGVERIFY 0xaf
#define IGUANA_OP_NOP1 0xb0
#define IGUANA_OP_CHECKLOCKTIMEVERIFY 0xb1
#define IGUANA_OP_CHECKSEQUENCEVERIFY 0xb2
#define IGUANA_OP_NOP10 0xb9
#define IGUANA_NOPFLAG 1
#define IGUANA_ALWAYSILLEGAL 2
#define IGUANA_EXECUTIONILLEGAL 4
#define IGUANA_POSTVERIFY 8
#define IGUANA_CRYPTOFLAG 16
#define IGUANA_MATHFLAG 32
#define IGUANA_CONTROLFLAG 64
#define IGUANA_STACKFLAG 128
enum opcodetype
{
// push value
OP_0 = 0x00,
OP_FALSE = OP_0,
OP_PUSHDATA1 = 0x4c,
OP_PUSHDATA2 = 0x4d,
OP_PUSHDATA4 = 0x4e,
OP_1NEGATE = 0x4f,
OP_RESERVED = 0x50,
OP_1 = 0x51,
OP_TRUE=OP_1,
OP_2 = 0x52,
OP_3 = 0x53,
OP_4 = 0x54,
OP_5 = 0x55,
OP_6 = 0x56,
OP_7 = 0x57,
OP_8 = 0x58,
OP_9 = 0x59,
OP_10 = 0x5a,
OP_11 = 0x5b,
OP_12 = 0x5c,
OP_13 = 0x5d,
OP_14 = 0x5e,
OP_15 = 0x5f,
OP_16 = 0x60,
// control
OP_NOP = 0x61,
OP_VER = 0x62,
OP_IF = 0x63,
OP_NOTIF = 0x64,
OP_VERIF = 0x65,
OP_VERNOTIF = 0x66,
OP_ELSE = 0x67,
OP_ENDIF = 0x68,
OP_VERIFY = 0x69,
OP_RETURN = 0x6a,
// stack ops
OP_TOALTSTACK = 0x6b,
OP_FROMALTSTACK = 0x6c,
OP_2DROP = 0x6d,
OP_2DUP = 0x6e,
OP_3DUP = 0x6f,
OP_2OVER = 0x70,
OP_2ROT = 0x71,
OP_2SWAP = 0x72,
OP_IFDUP = 0x73,
OP_DEPTH = 0x74,
OP_DROP = 0x75,
OP_DUP = 0x76,
OP_NIP = 0x77,
OP_OVER = 0x78,
OP_PICK = 0x79,
OP_ROLL = 0x7a,
OP_ROT = 0x7b,
OP_SWAP = 0x7c,
OP_TUCK = 0x7d,
// splice ops
OP_CAT = 0x7e,
OP_SUBSTR = 0x7f,
OP_LEFT = 0x80,
OP_RIGHT = 0x81,
OP_SIZE = 0x82,
// bit logic
OP_INVERT = 0x83,
OP_AND = 0x84,
OP_OR = 0x85,
OP_XOR = 0x86,
OP_EQUAL = 0x87,
OP_EQUALVERIFY = 0x88,
OP_RESERVED1 = 0x89,
OP_RESERVED2 = 0x8a,
// numeric
OP_1ADD = 0x8b,
OP_1SUB = 0x8c,
OP_2MUL = 0x8d,
OP_2DIV = 0x8e,
OP_NEGATE = 0x8f,
OP_ABS = 0x90,
OP_NOT = 0x91,
OP_0NOTEQUAL = 0x92,
OP_ADD = 0x93,
OP_SUB = 0x94,
OP_MUL = 0x95,
OP_DIV = 0x96,
OP_MOD = 0x97,
OP_LSHIFT = 0x98,
OP_RSHIFT = 0x99,
OP_BOOLAND = 0x9a,
OP_BOOLOR = 0x9b,
OP_NUMEQUAL = 0x9c,
OP_NUMEQUALVERIFY = 0x9d,
OP_NUMNOTEQUAL = 0x9e,
OP_LESSTHAN = 0x9f,
OP_GREATERTHAN = 0xa0,
OP_LESSTHANOREQUAL = 0xa1,
OP_GREATERTHANOREQUAL = 0xa2,
OP_MIN = 0xa3,
OP_MAX = 0xa4,
OP_WITHIN = 0xa5,
// crypto
OP_RIPEMD160 = 0xa6,
OP_SHA1 = 0xa7,
OP_SHA256 = 0xa8,
OP_HASH160 = 0xa9,
OP_HASH256 = 0xaa,
OP_CODESEPARATOR = 0xab,
OP_CHECKSIG = 0xac,
OP_CHECKSIGVERIFY = 0xad,
OP_CHECKMULTISIG = 0xae,
OP_CHECKMULTISIGVERIFY = 0xaf,
// expansion
OP_NOP1 = 0xb0,
OP_CHECKLOCKTIMEVERIFY = 0xb1,
OP_CHECKSEQUENCEVERIFY = 0xb2,
OP_NOP4 = 0xb3,
OP_NOP5 = 0xb4,
OP_NOP6 = 0xb5,
OP_NOP7 = 0xb6,
OP_NOP8 = 0xb7,
OP_NOP9 = 0xb8,
OP_NOP10 = 0xb9,
// template matching params
//OP_SMALLINTEGER = 0xfa,
//OP_PUBKEYS = 0xfb,
//OP_PUBKEYHASH = 0xfd,
//OP_PUBKEY = 0xfe,
OP_INVALIDOPCODE = 0xff,
};
const char *get_opname(uint8_t *stackitemsp,uint8_t *flagsp,int32_t *extralenp,enum opcodetype opcode)
{
*extralenp = 0;
switch ( opcode )
{
// push value
case OP_0 : return "0";
case OP_PUSHDATA1 : *extralenp = 1; return "OP_PUSHDATA1";
case OP_PUSHDATA2 : *extralenp = 2; return "OP_PUSHDATA2";
case OP_PUSHDATA4 : *flagsp = IGUANA_EXECUTIONILLEGAL; return "OP_PUSHDATA4";
case OP_1NEGATE : return "-1";
case OP_RESERVED : *flagsp = IGUANA_EXECUTIONILLEGAL; return "OP_RESERVED";
case OP_1 : return "1";
case OP_2 : return "2";
case OP_3 : return "3";
case OP_4 : return "4";
case OP_5 : return "5";
case OP_6 : return "6";
case OP_7 : return "7";
case OP_8 : return "8";
case OP_9 : return "9";
case OP_10 : return "10";
case OP_11 : return "11";
case OP_12 : return "12";
case OP_13 : return "13";
case OP_14 : return "14";
case OP_15 : return "15";
case OP_16 : return "16";
// control
case OP_NOP : *flagsp = IGUANA_NOPFLAG; return "OP_NOP";
case OP_VER : *flagsp = IGUANA_EXECUTIONILLEGAL; return "OP_VER";
case OP_IF : *flagsp = IGUANA_CONTROLFLAG; *stackitemsp = 1; return "OP_IF";
case OP_NOTIF : *flagsp = IGUANA_CONTROLFLAG; *stackitemsp = 1; return "OP_NOTIF";
case OP_VERIF : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_VERIF";
case OP_VERNOTIF : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_VERNOTIF";
case OP_ELSE : *flagsp = IGUANA_CONTROLFLAG; return "OP_ELSE";
case OP_ENDIF : *flagsp = IGUANA_CONTROLFLAG; return "OP_ENDIF";
case OP_VERIFY : *flagsp = IGUANA_POSTVERIFY; return "OP_VERIFY";
case OP_RETURN : *flagsp = IGUANA_CONTROLFLAG; return "OP_RETURN";
// stack ops
case OP_TOALTSTACK : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 1; return "OP_TOALTSTACK";
case OP_FROMALTSTACK : *flagsp = IGUANA_STACKFLAG; return "OP_FROMALTSTACK";
case OP_2DROP : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 2; return "OP_2DROP";
case OP_2DUP : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 2; return "OP_2DUP";
case OP_3DUP : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 3; return "OP_3DUP";
case OP_2OVER : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 4; return "OP_2OVER";
case OP_2ROT : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 6; return "OP_2ROT";
case OP_2SWAP : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 4; return "OP_2SWAP";
case OP_IFDUP : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 1; return "OP_IFDUP";
case OP_DEPTH : *flagsp = IGUANA_STACKFLAG; return "OP_DEPTH";
case OP_DROP : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 1; return "OP_DROP";
case OP_DUP : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 1; return "OP_DUP";
case OP_NIP : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 2; return "OP_NIP";
case OP_OVER : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 2; return "OP_OVER";
case OP_PICK : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 1; return "OP_PICK";
case OP_ROLL : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 1; return "OP_ROLL";
case OP_ROT : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 3; return "OP_ROT";
case OP_SWAP : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 2; return "OP_SWAP";
case OP_TUCK : *flagsp = IGUANA_STACKFLAG; *stackitemsp = 2; return "OP_TUCK";
// splice ops
case OP_CAT : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_CAT";
case OP_SUBSTR : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_SUBSTR";
case OP_LEFT : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_LEFT";
case OP_RIGHT : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_RIGHT";
case OP_SIZE : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_SIZE";
// bit logic
case OP_INVERT : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_INVERT";
case OP_AND : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_AND";
case OP_OR : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_OR";
case OP_XOR : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_XOR";
case OP_EQUAL : *stackitemsp = 2; return "OP_EQUAL";
case OP_EQUALVERIFY : *stackitemsp = 2; *flagsp = IGUANA_POSTVERIFY; return "OP_EQUALVERIFY";
case OP_RESERVED1 : *flagsp = IGUANA_EXECUTIONILLEGAL; return "OP_RESERVED1";
case OP_RESERVED2 : *flagsp = IGUANA_EXECUTIONILLEGAL; return "OP_RESERVED2";
// numeric
case OP_1ADD : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 1; return "OP_1ADD";
case OP_1SUB : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 1; return "OP_1SUB";
case OP_2MUL : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_2MUL";
case OP_2DIV : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_2DIV";
case OP_NEGATE : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 1; return "OP_NEGATE";
case OP_ABS : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 1; return "OP_ABS";
case OP_NOT : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 1; return "OP_NOT";
case OP_0NOTEQUAL : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 1; return "OP_0NOTEQUAL";
case OP_ADD : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_ADD";
case OP_SUB : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_SUB";
case OP_MUL : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_MUL";
case OP_DIV : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_DIV";
case OP_MOD : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_MOD";
case OP_LSHIFT : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_LSHIFT";
case OP_RSHIFT : *flagsp = IGUANA_ALWAYSILLEGAL; return "OP_RSHIFT";
case OP_BOOLAND : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_BOOLAND";
case OP_BOOLOR : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_BOOLOR";
case OP_NUMEQUAL : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_NUMEQUAL";
case OP_NUMEQUALVERIFY: *flagsp = IGUANA_MATHFLAG | IGUANA_POSTVERIFY; *stackitemsp = 2; return "OP_NUMEQUALVERIFY";
case OP_NUMNOTEQUAL : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_NUMNOTEQUAL";
case OP_LESSTHAN : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_LESSTHAN";
case OP_GREATERTHAN : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_GREATERTHAN";
case OP_LESSTHANOREQUAL: *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_LESSTHANOREQUAL";
case OP_GREATERTHANOREQUAL: *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_GREATERTHANOREQUAL";
case OP_MIN : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_MIN";
case OP_MAX : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 2; return "OP_MAX";
case OP_WITHIN : *flagsp = IGUANA_MATHFLAG; *stackitemsp = 3; return "OP_WITHIN";
// crypto
case OP_RIPEMD160 : *stackitemsp = 1; *flagsp = IGUANA_CRYPTOFLAG; return "OP_RIPEMD160";
case OP_SHA1 : *stackitemsp = 1; *flagsp = IGUANA_CRYPTOFLAG; return "OP_SHA1";
case OP_SHA256 : *stackitemsp = 1; *flagsp = IGUANA_CRYPTOFLAG; return "OP_SHA256";
case OP_HASH160 : *stackitemsp = 1; *flagsp = IGUANA_CRYPTOFLAG; return "OP_HASH160";
case OP_HASH256 : *stackitemsp = 1; *flagsp = IGUANA_CRYPTOFLAG; return "OP_HASH256";
case OP_CODESEPARATOR: return "OP_CODESEPARATOR";
case OP_CHECKSIG : *stackitemsp = 2; *flagsp = IGUANA_CRYPTOFLAG; return "OP_CHECKSIG";
case OP_CHECKSIGVERIFY: *stackitemsp = 2; *flagsp = IGUANA_CRYPTOFLAG | IGUANA_POSTVERIFY; return "OP_CHECKSIGVERIFY";
case OP_CHECKMULTISIG: *flagsp = IGUANA_CRYPTOFLAG; return "OP_CHECKMULTISIG";
case OP_CHECKMULTISIGVERIFY: *flagsp = IGUANA_CRYPTOFLAG | IGUANA_POSTVERIFY; return "OP_CHECKMULTISIGVERIFY";
// expanson
case OP_NOP1 : *flagsp = IGUANA_NOPFLAG; return "OP_NOP1";
case OP_CHECKLOCKTIMEVERIFY: *stackitemsp = 1; return "OP_CHECKLOCKTIMEVERIFY";
case OP_CHECKSEQUENCEVERIFY: *stackitemsp = 1; return "OP_CHECKSEQUENCEVERIFY";
case OP_NOP4 : *flagsp = IGUANA_NOPFLAG; return "OP_NOP4";
case OP_NOP5 : *flagsp = IGUANA_NOPFLAG; return "OP_NOP5";
case OP_NOP6 : *flagsp = IGUANA_NOPFLAG; return "OP_NOP6";
case OP_NOP7 : *flagsp = IGUANA_NOPFLAG; return "OP_NOP7";
case OP_NOP8 : *flagsp = IGUANA_NOPFLAG; return "OP_NOP8";
case OP_NOP9 : *flagsp = IGUANA_NOPFLAG; return "OP_NOP9";
case OP_NOP10 : *flagsp = IGUANA_NOPFLAG; return "OP_NOP10";
case OP_INVALIDOPCODE: return "OP_INVALIDOPCODE";
default: return "OP_UNKNOWN";
}
}
static inline int32_t is_delim(int32_t c)
{
if ( c == 0 || c == ' ' || c == '\t' || c == '\r' || c == '\n' )
return(1);
else return(0);
}
union iguana_stacknum { int32_t val; int64_t val64; uint8_t rmd160[20]; bits256 hash2; uint8_t pubkey[33]; uint8_t sig[74]; };
struct iguana_stackdata { uint8_t *data; uint16_t size; union iguana_stacknum U; };
struct iguana_interpreter
{
int32_t active,ifdepth,elsedepth,codeseparator,stackdepth,altstackdepth,maxstackdepth;
int8_t lastpath[IGUANA_MAXSTACKDEPTH];
cJSON *logarray;
struct iguana_stackdata stack[];
};
static struct bitcoin_opcode { UT_hash_handle hh; uint8_t opcode,flags,stackitems; int8_t extralen; } *OPTABLE; static char *OPCODES[0x100]; static int32_t OPCODELENS[0x100];
static struct iguana_stackdata iguana_pop(struct iguana_interpreter *stacks)
{
struct iguana_stackdata Snum;
Snum = stacks->stack[--stacks->stackdepth];
memset(&stacks->stack[stacks->stackdepth],0,sizeof(Snum));
return(Snum);
}
static int32_t iguana_altpush(struct iguana_interpreter *stacks,struct iguana_stackdata Snum)
{
stacks->stack[2*IGUANA_MAXSTACKITEMS - ++stacks->altstackdepth] = Snum;
return(stacks->altstackdepth);
}
static struct iguana_stackdata iguana_altpop(struct iguana_interpreter *stacks)
{
struct iguana_stackdata Snum,*ptr;
ptr = &stacks->stack[2*IGUANA_MAXSTACKITEMS - --stacks->altstackdepth];
Snum = *ptr;
memset(ptr,0,sizeof(Snum));
return(Snum);
}
static struct iguana_stackdata iguana_clone(struct iguana_stackdata Snum)
{
struct iguana_stackdata clone;
clone = Snum;
if ( Snum.data != 0 )
{
clone.data = malloc(Snum.size);
memcpy(clone.data,Snum.data,Snum.size);
}
return(clone);
}
static int32_t iguana_isnonz(struct iguana_stackdata Snum)
{
uint8_t *buf; int32_t i;
if ( Snum.size == sizeof(int32_t) )
return(Snum.U.val != 0);
else if ( Snum.size == sizeof(int64_t) )
return(Snum.U.val64 != 0);
else if ( Snum.size == 20 )
buf = Snum.U.rmd160;
else if ( Snum.size == sizeof(bits256) )
buf = Snum.U.hash2.bytes;
else if ( Snum.size == 33 )
buf = Snum.U.pubkey;
else if ( Snum.size < 74 )
buf = Snum.U.sig;
else buf = Snum.data;
for (i=0; i<Snum.size; i++)
if ( buf[i] != 0 )
return(1);
return(0);
}
static int32_t iguana_num(struct iguana_stackdata Snum)
{
if ( Snum.size == sizeof(int32_t) )
return(Snum.U.val);
else return(0);
}
static int32_t iguana_pushdata(struct iguana_interpreter *stacks,int64_t num64,uint8_t *numbuf,int32_t numlen)
{
struct iguana_stackdata Snum; cJSON *item = 0; char tmpstr[2048]; int32_t num = (int32_t)num64;
if ( stacks->maxstackdepth > 0 )
{
/*if ( numbuf != 0 )
{
int32_t i; for (i=0; i<numlen; i++)
printf("%02x",numbuf[i]);
} else printf("%lld",(long long)num64);
printf(" PUSHDATA len.%d\n",numlen);*/
if ( stacks->stackdepth < stacks->maxstackdepth )
{
if ( stacks->logarray != 0 )
item = cJSON_CreateObject();
memset(&Snum,0,sizeof(Snum));
if ( numbuf != 0 )
{
if ( numlen <= sizeof(int32_t) )
{
iguana_rwnum(1,(void *)&num,numlen,numbuf);
numlen = sizeof(num);
Snum.U.val = num;
}
else if ( numlen <= sizeof(int64_t) )
{
iguana_rwnum(1,(void *)&num64,numlen,numbuf);
numlen = sizeof(num64);
Snum.U.val64 = num64;
}
else if ( numlen == 20 )
memcpy(Snum.U.rmd160,numbuf,20);
else if ( numlen == sizeof(bits256) )
iguana_rwbignum(1,Snum.U.hash2.bytes,sizeof(Snum.U.hash2),numbuf);
else if ( numlen == 33 )
memcpy(Snum.U.pubkey,numbuf,numlen);
else if ( numlen < 74 )
memcpy(Snum.U.sig,numbuf,numlen);
else
{
Snum.data = malloc(numlen);
memcpy(Snum.data,numbuf,numlen);
if ( item != 0 )
jaddnum(item,"push",numlen);
}
Snum.size = numlen;
if ( item != 0 )
{
init_hexbytes_noT(tmpstr,numbuf,numlen);
jaddstr(item,"push",tmpstr);
}
}
else if ( num64 <= 0xffffffff ) // what about negative numbers?
{
Snum.U.val = num, Snum.size = sizeof(num);
if ( item != 0 )
jaddnum(item,"push",Snum.U.val);
}
else
{
Snum.U.val64 = num64, Snum.size = sizeof(num64);
if ( item != 0 )
jaddnum(item,"push",Snum.U.val64);
}
if ( item != 0 )
{
jaddnum(item,"depth",stacks->stackdepth);
if ( stacks->logarray != 0 )
jaddi(stacks->logarray,item);
}
stacks->stack[stacks->stackdepth++] = Snum;
} else return(-1);
} else stacks->stackdepth++;
return(0);
}
int32_t iguana_databuf(uint8_t *databuf,struct iguana_stackdata Snum)
{
if ( Snum.size == 4 )
memcpy(databuf,&Snum.U.val,4);
else if ( Snum.size == 8 )
memcpy(databuf,&Snum.U.val64,8);
else if ( Snum.size == 20 )
memcpy(databuf,&Snum.U.rmd160,20);
else if ( Snum.size == 32 )
memcpy(databuf,&Snum.U.hash2.bytes,32);
else if ( Snum.size == 33 )
memcpy(databuf,&Snum.U.pubkey,33);
else if ( Snum.size < 74 )
memcpy(databuf,&Snum.U.sig,Snum.size);
else memcpy(databuf,&Snum.data,Snum.size);
return(Snum.size);
}
static int32_t iguana_cmp(struct iguana_stackdata *a,struct iguana_stackdata *b)
{
if ( a->size == b->size )
{
if ( a->size == 4 )
return(a->U.val != b->U.val);
else if ( a->size == 8 )
return(a->U.val64 != b->U.val64);
else if ( a->size == 20 )
return(memcmp(a->U.rmd160,b->U.rmd160,sizeof(a->U.rmd160)));
else if ( a->size == 32 )
return(memcmp(a->U.hash2.bytes,b->U.hash2.bytes,sizeof(a->U.hash2)));
else if ( a->size == 33 )
return(memcmp(a->U.pubkey,b->U.pubkey,33));
else if ( a->size < 74 )
return(memcmp(a->U.sig,b->U.sig,a->size));
else return(memcmp(a->data,b->data,sizeof(a->size)));
}
return(-1);
}
static int32_t iguana_dataparse(struct iguana_interpreter *stacks,uint8_t *script,int32_t k,char *str,int32_t *lenp)
{
int32_t n,c,len; char tmp[4];
*lenp = 0;
c = str[0];
n = is_hexstr(str,0);
if ( n > 0 )
{
if ( (n & 1) != 0 )
len = (n+1) >> 1;
else len = n >> 1;
if ( len > 0 && len < 76 )
{
if ( len == 1 )
{
if ( n == 1 )
{
tmp[0] = '0';
tmp[1] = c;
tmp[2] = 0;
decode_hex(&script[k],1,tmp), (*lenp) = 1;
if ( script[k] != 0 )
script[k++] += (IGUANA_OP_1 - 1);
iguana_pushdata(stacks,c,0,0);
return(k);
}
else if ( n == 2 && c == '1' && str[1] == '0' && is_delim(str[2]) != 0 )
{
script[k++] = (IGUANA_OP_1 - 1) + 0x10, (*lenp) = 2;
iguana_pushdata(stacks,0x10,0,0);
return(k);
}
else if ( n == 2 && c == '8' && is_delim(str[2]) != 0 )
{
if ( str[1] == '1' )
{
script[k++] = IGUANA_OP_1NEGATE, (*lenp) = 2;
iguana_pushdata(stacks,-1,0,0);
return(k);
}
else if ( str[1] == '0' )
{
script[k++] = IGUANA_OP_0, (*lenp) = 2;
iguana_pushdata(stacks,0,0,0);
return(k);
}
}
}
if ( len != 0 )
script[k++] = len;
}
else if ( len <= 0xff )
{
script[k++] = IGUANA_OP_PUSHDATA1;
script[k++] = len;
}
else if ( len <= 0xffff )
{
if ( len <= MAX_SCRIPT_ELEMENT_SIZE )
{
script[k++] = IGUANA_OP_PUSHDATA2;
script[k++] = (len & 0xff);
script[k++] = ((len >> 8) & 0xff);
}
else
{
printf("len.%d > MAX_SCRIPT_ELEMENT_SIZE.%d, offset.%d\n",len,MAX_SCRIPT_ELEMENT_SIZE,k);
return(-1);
}
}
else
{
printf("len.%d > MAX_SCRIPT_ELEMENT_SIZE.%d, offset.%d\n",len,MAX_SCRIPT_ELEMENT_SIZE,k);
return(-1);
}
if ( len != 0 )
{
uint8_t *numstart; int32_t numlen;
numstart = &script[k], numlen = len;
if ( (n & 1) != 0 )
{
tmp[0] = '0';
tmp[1] = c;
tmp[2] = 0;
decode_hex(&script[k++],1,tmp), *lenp = 1;
len--;
}
if ( len != 0 )
{
decode_hex(&script[k],len,str), (*lenp) += (len << 1);
k += len;
}
iguana_pushdata(stacks,0,numstart,numlen);
}
return(k);
}
return(0);
}
void iguana_stack(struct iguana_interpreter *stacks,struct iguana_stackdata *args,int32_t num,char *pushstr,char *clonestr)
{
int32_t i,c;
while ( (c= *pushstr++) != 0 )
stacks->stack[stacks->stackdepth++] = args[c - '0'];
while ( (c= *clonestr++) != 0 )
stacks->stack[stacks->stackdepth++] = iguana_clone(args[c - '0']);
if ( num > 0 )
{
for (i=0; i<num; i++)
memset(&args[i],0,sizeof(args[i]));
}
}
int32_t iguana_checksig(struct iguana_info *coin,struct iguana_stackdata pubkeyarg,struct iguana_stackdata sigarg,bits256 sigtxid)
{
uint8_t pubkey[MAX_SCRIPT_ELEMENT_SIZE],sig[MAX_SCRIPT_ELEMENT_SIZE]; int32_t plen,siglen;
plen = iguana_databuf(pubkey,pubkeyarg);
siglen = iguana_databuf(sig,sigarg);
int32_t i; for (i=0; i<siglen; i++)
printf("%02x",sig[i]);
printf(" sig, ");
for (i=0; i<plen; i++)
printf("%02x",pubkey[i]);
char str[65]; printf(" checksig sigtxid.%s\n",bits256_str(str,sigtxid));
if ( bitcoin_pubkeylen(pubkey) == plen && plen > 0 && siglen > 0 && siglen < 74 )
return(bitcoin_verify(coin->ctx,sig,siglen-1,sigtxid,pubkey,plen) == 0);
return(0);
}
int32_t iguana_checkmultisig(struct iguana_info *coin,struct iguana_interpreter *stacks,int32_t M,int32_t N,bits256 txhash2)
{
int32_t i,j=0,len,valid=0,numsigners = 0,siglens[MAX_PUBKEYS_PER_MULTISIG]; uint8_t pubkeys[MAX_PUBKEYS_PER_MULTISIG][MAX_SCRIPT_ELEMENT_SIZE],sigs[MAX_PUBKEYS_PER_MULTISIG][MAX_SCRIPT_ELEMENT_SIZE];
if ( M <= N && N <= MAX_PUBKEYS_PER_MULTISIG )
{
for (i=0; i<N; i++)
{
if ( stacks->stackdepth <= 0 )
return(0);
len = iguana_databuf(pubkeys[i],iguana_pop(stacks));
if ( len == bitcoin_pubkeylen(pubkeys[i]) )
numsigners++;
else
{
memcpy(sigs[0],pubkeys[i],len);
siglens[0] = len;
break;
}
}
for (i=1; i<numsigners; i++)
{
if ( stacks->stackdepth <= 0 )
return(0);
siglens[i] = iguana_databuf(sigs[i],iguana_pop(stacks));
if ( siglens[i] > 0 && siglens[i] < 74 )
break;
}
if ( i == numsigners )
{
iguana_pop(stacks);
j = numsigners-1;
for (i=numsigners-1; i>=0; i--)
{
for (; j>=0; j--)
{
if ( bitcoin_verify(coin->ctx,sigs[i],siglens[i],txhash2,pubkeys[j],bitcoin_pubkeylen(pubkeys[j])) == 0 )
{
if ( ++valid >= M )
return(1);
j--;
break;
}
}
}
}
}
printf("valid.%d j.%d M.%d N.%d numsigners.%d\n",valid,j,M,N,numsigners);
return(0);
}
int32_t iguana_checklocktimeverify(struct iguana_info *coin,int64_t nLockTime,uint32_t nSequence,struct iguana_stackdata Snum)
{
int32_t num = iguana_num(Snum);
if ( num < 0 || (num >= 500000000 && nLockTime < 500000000) || (num < 500000000 && nLockTime >= 500000000) || nSequence == 0xffffffff || num > nLockTime )
return(-1);
return(0);
}
int32_t iguana_checksequenceverify(struct iguana_info *coin,int64_t nLockTime,uint32_t nSequence,struct iguana_stackdata Snum)
{
return(0);
}
void iguana_optableinit(struct iguana_info *coin)
{
int32_t i,extralen; uint8_t stackitems,flags; char *opname; struct bitcoin_opcode *op;
if ( OPTABLE == 0 )
{
for (i=0; i<0x100; i++)
OPCODES[i] = "OP_UNKNOWN";
for (i=0; i<0x100; i++)
{
extralen = stackitems = flags = 0;
opname = (char *)get_opname(&stackitems,&flags,&extralen,i);
if ( strcmp("OP_UNKNOWN",opname) != 0 )
{
op = calloc(1,sizeof(*op));
HASH_ADD_KEYPTR(hh,OPTABLE,opname,strlen(opname),op);
//printf("{%-16s %02x} ",opname,i);
op->opcode = i;
op->flags = flags;
op->stackitems = stackitems;
op->extralen = extralen;
OPCODES[i] = (char *)op->hh.key;
OPCODELENS[i] = (int32_t)strlen(OPCODES[i]);
}
}
//printf("bitcoin opcodes\n");
}
}
int32_t iguana_expandscript(struct iguana_info *coin,char *asmstr,int32_t maxlen,uint8_t *script,int32_t scriptlen)
{
int32_t len,n,j,i = 0; uint8_t opcode; uint32_t val,extraflag;
iguana_optableinit(coin);
asmstr[0] = len = 0;
while ( i < scriptlen )
{
val = extraflag = 0;
opcode = script[i++];
if ( opcode > 0 && opcode < 76 )
{
for (j=0; j<opcode; j++)
sprintf(&asmstr[len],"%02x",script[i++]), len += 2;
}
else if ( opcode >= IGUANA_OP_1 && opcode <= IGUANA_OP_16 )
{
sprintf(&asmstr[len],"%d",opcode - IGUANA_OP_1 + 1);
len += strlen(&asmstr[len]);
}
else if ( opcode == IGUANA_OP_0 )
{
strcpy(&asmstr[len],"OP_FALSE");
len += 8;
}
else if ( opcode == IGUANA_OP_1NEGATE )
{
asmstr[len++] = '-';
asmstr[len++] = '1';
}
else
{
//printf("dest.%p <- %p %02x\n",&asmstr[len],OPCODES[opcode],opcode);
strcpy(&asmstr[len],OPCODES[opcode]);
len += OPCODELENS[opcode];
}
if ( i < scriptlen )
asmstr[len++] = ' ';
if ( opcode == IGUANA_OP_PUSHDATA1 )
{
n = script[i++];
for (j=0; j<n; j++)
sprintf(&asmstr[len],"%02x",script[i++]), len += 2;
extraflag = 1;
}
else if ( opcode == IGUANA_OP_PUSHDATA2 )
{
n = script[i++];
n = (n << 8) | script[i++];
for (j=0; j<n; j++)
sprintf(&asmstr[len],"%02x",script[i++]), len += 2;
extraflag = 1;
}
else if ( opcode == IGUANA_OP_PUSHDATA4 )
{
n = script[i++];
n = (n << 8) | script[i++];
n = (n << 8) | script[i++];
n = (n << 8) | script[i++];
for (j=0; j<n; j++)
sprintf(&asmstr[len],"%02x",script[i++]), len += 2;
extraflag = 1;
}
if ( extraflag != 0 && i < scriptlen )
asmstr[len++] = ' ';
}
asmstr[len] = 0;
return(len);
}
cJSON *iguana_spendasm(struct iguana_info *coin,uint8_t *spendscript,int32_t spendlen)
{
char asmstr[IGUANA_MAXSCRIPTSIZE*2+1]; cJSON *spendasm = cJSON_CreateObject();
iguana_expandscript(coin,asmstr,sizeof(asmstr),spendscript,spendlen);
//int32_t i; for (i=0; i<spendlen; i++)
// printf("%02x",spendscript[i]);
//printf(" -> (%s)\n",asmstr);
jaddstr(spendasm,"interpreter",asmstr);
return(spendasm);
}
int32_t bitcoin_assembler(struct iguana_info *coin,cJSON *logarray,uint8_t script[IGUANA_MAXSCRIPTSIZE],cJSON *interpreter,int32_t interpret,int64_t nLockTime,struct vin_info *V)
{
struct bitcoin_opcode *op; cJSON *array = 0; struct iguana_interpreter STACKS,*stacks = &STACKS;
struct iguana_stackdata args[MAX_PUBKEYS_PER_MULTISIG];
uint8_t databuf[MAX_SCRIPT_ELEMENT_SIZE]; char *asmstr,*str,*hexstr; cJSON *item;
int32_t c,numops,plen,numvars,numused,numargs=0,i,j,k,n,len,val,datalen,errs=0;
iguana_optableinit(coin);
if ( (asmstr= jstr(interpreter,"interpreter")) == 0 )
return(-1);
if ( (numvars= juint(interpreter,"numvars")) > 0 )
{
if ( (array= jarray(&n,interpreter,"args")) == 0 || (interpret != 0 && n != numvars) )
return(-2);
}
str = asmstr;
if ( interpret != 0 )
{
stacks = calloc(1,sizeof(*stacks) + sizeof(*stacks->stack)*2*IGUANA_MAXSTACKITEMS);
stacks->maxstackdepth = IGUANA_MAXSTACKITEMS;
if ( (stacks->logarray= logarray) != 0 )
item = cJSON_CreateObject();
else item = 0;
if ( V->M == 0 && V->N == 0 )
V->N = V->M = 1;
for (i=0; i<V->N; i++)
{
if ( V->signers[i].siglen != 0 )
{
iguana_pushdata(stacks,0,V->signers[i].sig,V->signers[i].siglen);
if ( bitcoin_pubkeylen(V->signers[i].pubkey) <= 0 )
{
printf("missing pubkey.[%d]\n",i);
free(stacks);
return(-1);
}
}
}
for (i=0; i<V->N; i++)
{
if ( V->signers[i].siglen != 0 )
{
plen = bitcoin_pubkeylen(V->signers[i].pubkey);
if ( V->spendscript[0] != plen || V->spendscript[V->spendlen - 1] != IGUANA_OP_CHECKSIG || bitcoin_pubkeylen(&V->spendscript[1]) <= 0 )
iguana_pushdata(stacks,0,V->signers[i].pubkey,plen);
}
}
if ( item != 0 && stacks->logarray != 0 )
{
jaddstr(item,"spendasm",asmstr);
jaddi(stacks->logarray,item);
}
if ( V->extras != 0 )
{
if ( (n= cJSON_GetArraySize(V->extras)) > 0 )
{
for (i=0; i<n; i++)
{
if ( (hexstr= jstr(jitem(V->extras,i),0)) != 0 && (len= is_hexstr(hexstr,0)) > 0 )
{
len >>= 1;
decode_hex(databuf,len,hexstr);
iguana_pushdata(stacks,0,databuf,len);
}
}
}
}
} else memset(stacks,0,sizeof(*stacks));
stacks->lastpath[0] = 1;
k = numops = numused = 0;
script[k] = 0;
while ( (c= *str++) != 0 )
{
if ( is_delim(c) != 0 )
{
//if ( c == 0 )
// break;
continue;
}
if ( c == '/' && *str == '/' ) // support //
break;
else if ( c == '-' && *str == '1' && is_delim(str[1]) != 0 )
{
script[k++] = IGUANA_OP_1NEGATE, str += 3; // OP_1NEGATE;
iguana_pushdata(stacks,-1,0,0);
continue;
}
else if ( c == '%' && *str == 's' )
{
str++;
if ( numused < numvars && (hexstr= jstr(jitem(array,numused++),0)) != 0 )
{
if ( (n= iguana_dataparse(stacks,script,k,str,&len)) > 0 )
{
k += n;
continue;
}
}
printf("dataparse error.%d, numused.%d >= numvars.%d\n",n,numused,numvars);
errs++;
break;
}
else
{
str--;
if ( (n= iguana_dataparse(stacks,script,k,str,&len)) > 0 )
{
k = n;
str += len;
continue;
}
else if ( n < 0 )
{
errs++;
break;
}
}
for (j=0; j<32; j++)
if ( is_delim(str[j]) != 0 )
break;
if ( j == 32 )
{
printf("too long opcode.%s at offset.%ld\n",str,(long)str-(long)asmstr);
errs++;
break;
}
HASH_FIND(hh,OPTABLE,str,j,op);
str += j;
if ( op != 0 )
{
if ( numargs > 0 )
{
for (i=0; i<numargs; i++)
if ( args[i].data != 0 )
{
printf("filter free\n");
free(args[i].data);
}
}
memset(args,0,sizeof(args));
numargs = 0;
if ( op->opcode <= IGUANA_OP_16 || ++numops <= MAX_OPS_PER_SCRIPT )
{
script[k++] = op->opcode;
if ( (op->flags & IGUANA_ALWAYSILLEGAL) != 0 )
{
printf("disabled opcode.%s at offset.%ld\n",str,(long)str-(long)asmstr);
errs++;
break;
}
else if ( op->extralen > 0 )
{
if ( is_delim(*str) != 0 )
str++;
if ( is_hexstr(str,0) != (op->extralen<<1) )
{
printf("expected extralen.%d of hex, got.(%s) at offset.%ld\n",op->extralen,str,(long)str-(long)asmstr);
errs++;
break;
}
decode_hex(&script[k],op->extralen,str), str += (op->extralen << 1);
if ( op->extralen == 1 )
iguana_pushdata(stacks,script[k],0,0);
else if ( op->extralen == 2 )
iguana_pushdata(stacks,script[k] + ((uint32_t)script[k]<<8),0,0);
k += op->extralen;
continue;
}
if ( interpret == 0 || V == 0 )
continue;
if ( (numargs= op->stackitems) > 0 )
{
if ( stacks->stackdepth < op->stackitems )
{
printf("stackdepth.%d needed.%d (%s) at offset.%ld\n",stacks->stackdepth,op->stackitems,str,(long)str-(long)asmstr);
errs++;
break;
}
for (i=0; i<numargs; i++)
args[numargs - 1 - i] = iguana_pop(stacks);
}
if ( stacks->logarray != 0 )
{
char tmpstr[1096];
item = cJSON_CreateObject();
array = cJSON_CreateArray();
for (i=0; i<numargs; i++)
{
datalen = iguana_databuf(databuf,args[i]);
init_hexbytes_noT(tmpstr,databuf,datalen);
jaddistr(array,tmpstr);
}
jadd(item,(char *)op->hh.key,array);
jaddi(stacks->logarray,item);
}
if ( (op->flags & IGUANA_NOPFLAG) != 0 )
continue;
if ( (op->flags & IGUANA_CONTROLFLAG) != 0 )
{
switch ( op->opcode )
{
case IGUANA_OP_IF: case IGUANA_OP_NOTIF:
if ( stacks->ifdepth >= IGUANA_MAXSTACKDEPTH )
{
printf("ifdepth.%d >= MAXSTACKDEPTH.%d\n",stacks->ifdepth,IGUANA_MAXSTACKDEPTH);
errs++;
}
else
{
if ( iguana_isnonz(args[0]) == (op->opcode == IGUANA_OP_IF) )
val = 1;
else val = -1;
stacks->lastpath[++stacks->ifdepth] = val;
}
break;
case IGUANA_OP_ELSE:
if ( stacks->ifdepth <= stacks->elsedepth )
{
printf("unhandled opcode.%02x stacks->ifdepth %d <= %d stacks->elsedepth\n",op->opcode,stacks->ifdepth,stacks->elsedepth);
errs++;
}
stacks->lastpath[stacks->ifdepth] *= -1;
break;
case IGUANA_OP_ENDIF:
if ( stacks->ifdepth <= 0 )
{
printf("endif without if offset.%ld\n",(long)str-(long)asmstr);
errs++;
}
stacks->ifdepth--;
break;
case IGUANA_OP_VERIFY: break;
case IGUANA_OP_RETURN:
iguana_pushdata(stacks,0,0,0);
errs++;
break;
}
if ( errs != 0 )
break;
continue;
}
if ( stacks->lastpath[stacks->ifdepth] < 0 )
{
if ( stacks->logarray )
jaddistr(stacks->logarray,"skip");
continue;
}
else if ( (op->flags & IGUANA_EXECUTIONILLEGAL) != 0 )
{
printf("opcode not allowed to run.%s at %ld\n",(char *)op->hh.key,(long)str-(long)asmstr);
errs++;
break;
}
else if ( op->opcode == IGUANA_OP_EQUALVERIFY || op->opcode == IGUANA_OP_EQUAL )
{
if ( iguana_cmp(&args[0],&args[1]) == 0 )
iguana_pushdata(stacks,1,0,0);
else iguana_pushdata(stacks,0,0,0);
}
else if ( (op->flags & IGUANA_CRYPTOFLAG) != 0 )
{
uint8_t rmd160[20]; bits256 hash;
datalen = iguana_databuf(databuf,args[0]);
switch ( op->opcode )
{
case IGUANA_OP_RIPEMD160:
calc_rmd160(0,rmd160,databuf,datalen);
iguana_pushdata(stacks,0,rmd160,sizeof(rmd160));
break;
case IGUANA_OP_SHA1:
calc_sha1(0,rmd160,databuf,datalen);
iguana_pushdata(stacks,0,rmd160,sizeof(rmd160));
break;
case IGUANA_OP_HASH160:
calc_rmd160_sha256(rmd160,databuf,datalen);
iguana_pushdata(stacks,0,rmd160,sizeof(rmd160));
break;
case IGUANA_OP_SHA256:
vcalc_sha256(0,hash.bytes,databuf,datalen);
iguana_pushdata(stacks,0,hash.bytes,sizeof(hash));
break;
case IGUANA_OP_HASH256:
hash = bits256_doublesha256(0,databuf,datalen);
iguana_pushdata(stacks,0,hash.bytes,sizeof(hash));
break;
case IGUANA_OP_CHECKSIG: case IGUANA_OP_CHECKSIGVERIFY:
iguana_pushdata(stacks,iguana_checksig(coin,args[1],args[0],V->sigtxid),0,0);
break;
case IGUANA_OP_CHECKMULTISIG: case IGUANA_OP_CHECKMULTISIGVERIFY:
iguana_pushdata(stacks,iguana_checkmultisig(coin,stacks,V->M,V->N,V->sigtxid),0,0);
break;
}
}
else if ( op->opcode == IGUANA_OP_CHECKLOCKTIMEVERIFY ) // former OP_NOP2
{
if ( iguana_checklocktimeverify(coin,nLockTime,V->sequence,args[0]) < 0 )
{
iguana_stack(stacks,args,1,"0","");
errs++;
break;
}
iguana_stack(stacks,args,1,"0","");
continue;
}
else if ( op->opcode == IGUANA_OP_CHECKSEQUENCEVERIFY ) // former OP_NOP3
{
if ( iguana_checksequenceverify(coin,nLockTime,V->sequence,args[0]) < 0 )
{
iguana_stack(stacks,args,1,"0","");
errs++;
break;
}
iguana_stack(stacks,args,1,"0","");
continue;
}
else if ( (op->flags & IGUANA_STACKFLAG) != 0 )
{
if ( op->opcode == IGUANA_OP_PICK || op->opcode == IGUANA_OP_ROLL )
{
if ( interpret != 0 && stacks->stackdepth < (val= iguana_num(args[0])) )
{
printf("stack not deep enough %d < %d\n",stacks->stackdepth,iguana_num(args[0]));
errs++;
break;
}
if ( op->opcode == IGUANA_OP_PICK )
{
stacks->stack[stacks->stackdepth] = iguana_clone(stacks->stack[stacks->stackdepth - 1 - val]);
stacks->stackdepth++;
}
else
{
args[1] = stacks->stack[stacks->stackdepth - 1 - val];
for (i=stacks->stackdepth-1-val; i<stacks->stackdepth-1; i++)
stacks->stack[i] = stacks->stack[i+1];
stacks->stack[stacks->stackdepth - 1] = args[1];
}
}
else
{
switch ( op->opcode )
{
case IGUANA_OP_TOALTSTACK:
if ( stacks->altstackdepth < stacks->maxstackdepth )
{
iguana_altpush(stacks,args[0]);
memset(&args[0],0,sizeof(args[0]));
}
else
{
printf("altstack overflow %d vs %d\n",stacks->altstackdepth,stacks->maxstackdepth);
errs++;
}
break;
case IGUANA_OP_FROMALTSTACK:
stacks->stack[stacks->stackdepth++] = iguana_altpop(stacks);
break;
case IGUANA_OP_DEPTH: iguana_pushdata(stacks,stacks->stackdepth,0,0); break;
case IGUANA_OP_DROP: case IGUANA_OP_2DROP: break;
case IGUANA_OP_3DUP: iguana_stack(stacks,args,3,"012","012"); break;
case IGUANA_OP_2OVER: iguana_stack(stacks,args,4,"0123","01"); break;
case IGUANA_OP_2ROT: iguana_stack(stacks,args,6,"234501",""); break;
case IGUANA_OP_2SWAP: iguana_stack(stacks,args,4,"2301",""); break;
case IGUANA_OP_IFDUP:
if ( iguana_isnonz(args[0]) != 0 )
iguana_stack(stacks,args,0,"","0");
iguana_stack(stacks,args,1,"0","");
break;
case IGUANA_OP_DUP: iguana_stack(stacks,args,1,"0","0"); break;
case IGUANA_OP_2DUP: iguana_stack(stacks,args,2,"01","01"); break;
case IGUANA_OP_NIP:
if ( args[0].data != 0 )
free(args[0].data);
iguana_stack(stacks,args,2,"1","");
break;
case IGUANA_OP_OVER: iguana_stack(stacks,args,2,"01","0"); break;
case IGUANA_OP_ROT: iguana_stack(stacks,args,3,"120",""); break;
case IGUANA_OP_SWAP: iguana_stack(stacks,args,2,"10",""); break;
case IGUANA_OP_TUCK: iguana_stack(stacks,args,2,"10","1"); break;
}
}
}
else if ( (op->flags & IGUANA_MATHFLAG) != 0 )
{
int32_t numA,numB,numC;
for (i=0; i<op->stackitems; i++)
{
if ( args[i].size != sizeof(int32_t) )
break;
if ( i == 0 )
numA = iguana_num(args[i]);
else if ( i == 1 )
numB = iguana_num(args[i]);
else if ( i == 2 )
numC = iguana_num(args[i]);
}
if ( i != op->stackitems )
{
printf("math script non-int32_t arg[%d] of %d\n",i,op->stackitems);
errs++;
break;
}
switch ( op->opcode )
{
case IGUANA_OP_1ADD: iguana_pushdata(stacks,numA + 1,0,0); break;
case IGUANA_OP_1SUB: iguana_pushdata(stacks,numA - 1,0,0); break;
case IGUANA_OP_NEGATE: iguana_pushdata(stacks,-numA,0,0); break;
case IGUANA_OP_ABS: iguana_pushdata(stacks,numA<0?-numA:numA,0,0); break;
case IGUANA_OP_NOT: iguana_pushdata(stacks,numA == 0,0,0); break;
case IGUANA_OP_0NOTEQUAL: iguana_pushdata(stacks,numA != 0,0,0); break;
case IGUANA_OP_ADD: iguana_pushdata(stacks,numA + numB,0,0); break;
case IGUANA_OP_SUB: iguana_pushdata(stacks,numA - numB,0,0); break;
case IGUANA_OP_BOOLAND:iguana_pushdata(stacks,numA != 0 && numB != 0,0,0); break;
case IGUANA_OP_BOOLOR: iguana_pushdata(stacks,numA != 0 || numB != 0,0,0); break;
case IGUANA_OP_NUMEQUAL: case IGUANA_OP_NUMEQUALVERIFY:
iguana_pushdata(stacks,numA == numB,0,0); break;
case IGUANA_OP_NUMNOTEQUAL:iguana_pushdata(stacks,numA != numB,0,0); break;
case IGUANA_OP_LESSTHAN: iguana_pushdata(stacks,numA < numB,0,0); break;
case IGUANA_OP_GREATERTHAN:iguana_pushdata(stacks,numA > numB,0,0); break;
case IGUANA_OP_LESSTHANOREQUAL:iguana_pushdata(stacks,numA <= numB,0,0); break;
case IGUANA_OP_GREATERTHANOREQUAL:iguana_pushdata(stacks,numA >= numB,0,0); break;
case IGUANA_OP_MIN: iguana_pushdata(stacks,numA <= numB ? numA : numB,0,0); break;
case IGUANA_OP_MAX: iguana_pushdata(stacks,numA >= numB ? numA : numB,0,0); break;
case IGUANA_OP_WITHIN: iguana_pushdata(stacks,numB <= numA && numA < numC,0,0); break;
}
}
else if ( op->opcode == IGUANA_OP_CODESEPARATOR )
{
if ( stacks != 0 )
stacks->codeseparator = k;
continue;
}
else
{
printf("unhandled opcode.%02x (%s)\n",op->opcode,str);
errs++;
break;
}
if ( (op->flags & IGUANA_POSTVERIFY) != 0 )
{
if ( stacks->stackdepth < 1 )
{
printf("empty stack at offset.%ld\n",(long)str - (long)asmstr);
errs++;
break;
}
if ( iguana_isnonz(stacks->stack[stacks->stackdepth-1]) == 0 )
break;
iguana_pop(stacks);
}
}
else
{
printf("too many ops opcode.%s at offset.%ld\n",str,(long)str - (long)asmstr);
errs++;
break;
}
}
else
{
printf("unknown opcode.%s at offset.%ld\n",str,(long)str - (long)asmstr);
errs++;
break;
}
}
if ( stacks != &STACKS )
{
if ( jobj(interpreter,"result") != 0 )
jdelete(interpreter,"result");
if ( stacks->stackdepth <= 0 )
{
errs++;
printf("empty stack error\n");
jaddstr(interpreter,"error","empty stack");
jadd(interpreter,"result",jfalse());
}
else if ( iguana_isnonz(stacks->stack[--stacks->stackdepth]) != 0 )
{
printf("Evaluate true, depth.%d errs.%d\n",stacks->stackdepth,errs);
jadd(interpreter,"result",jtrue());
}
//if ( stacks->logarray != 0 )
// printf("LOG.(%s)\n",jprint(stacks->logarray,0));
if ( numargs > 0 )
{
for (i=0; i<numargs; i++)
if ( args[i].data != 0 )
{
printf("filter free\n");
//free(args[i].U.data);
}
}
free(stacks);
}
if ( errs == 0 )
return(k);
else return(-errs);
}
#ifdef reference
/**
* Script is a stack machine (like Forth) that evaluates a predicate
* returning a bool indicating valid or not. There are no loops.
*/
#define stacktop(i) (stack.at(stack.size()+(i)))
#define altstacktop(i) (altstack.at(altstack.size()+(i)))
static inline void popstack(vector<valtype>& stack)
{
if (stack.empty())
throw runtime_error("popstack(): stack empty");
stack.pop_back();
}
bool static IsCompressedOrUncompressedPubKey(const valtype &vchPubKey) {
if (vchPubKey.size() < 33) {
// Non-canonical public key: too short
return false;
}
if (vchPubKey[0] == 0x04) {
if (vchPubKey.size() != 65) {
// Non-canonical public key: invalid length for uncompressed key
return false;
}
} else if (vchPubKey[0] == 0x02 || vchPubKey[0] == 0x03) {
if (vchPubKey.size() != 33) {
// Non-canonical public key: invalid length for compressed key
return false;
}
} else {
// Non-canonical public key: neither compressed nor uncompressed
return false;
}
return true;
}
/**
* A canonical signature exists of: <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype>
* Where R and S are not negative (their first byte has its highest bit not set), and not
* excessively padded (do not start with a 0 byte, unless an otherwise negative number follows,
* in which case a single 0 byte is necessary and even required).
*
* See https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623
*
* This function is consensus-critical since BIP66.
*/
bool static IsValidSignatureEncoding(const std::vector<unsigned char> &sig) {
// Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
// * total-length: 1-byte length descriptor of everything that follows,
// excluding the sighash byte.
// * R-length: 1-byte length descriptor of the R value that follows.
// * R: arbitrary-length big-endian encoded R value. It must use the shortest
// possible encoding for a positive integers (which means no null bytes at
// the start, except a single one when the next byte has its highest bit set).
// * S-length: 1-byte length descriptor of the S value that follows.
// * S: arbitrary-length big-endian encoded S value. The same rules apply.
// * sighash: 1-byte value indicating what data is hashed (not part of the DER
// signature)
// Minimum and maximum size constraints.
if (sig.size() < 9) return false;
if (sig.size() > 73) return false;
// A signature is of type 0x30 (compound).
if (sig[0] != 0x30) return false;
// Make sure the length covers the entire signature.
if (sig[1] != sig.size() - 3) return false;
// Extract the length of the R element.
unsigned int lenR = sig[3];
// Make sure the length of the S element is still inside the signature.
if (5 + lenR >= sig.size()) return false;
// Extract the length of the S element.
unsigned int lenS = sig[5 + lenR];
// Verify that the length of the signature matches the sum of the length
// of the elements.
if ((size_t)(lenR + lenS + 7) != sig.size()) return false;
// Check whether the R element is an integer.
if (sig[2] != 0x02) return false;
// Zero-length integers are not allowed for R.
if (lenR == 0) return false;
// Negative numbers are not allowed for R.
if (sig[4] & 0x80) return false;
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false;
// Check whether the S element is an integer.
if (sig[lenR + 4] != 0x02) return false;
// Zero-length integers are not allowed for S.
if (lenS == 0) return false;
// Negative numbers are not allowed for S.
if (sig[lenR + 6] & 0x80) return false;
// Null bytes at the start of S are not allowed, unless S would otherwise be
// interpreted as a negative number.
if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false;
return true;
}
bool static IsLowDERSignature(const valtype &vchSig, ScriptError* serror) {
if (!IsValidSignatureEncoding(vchSig)) {
return set_error(serror, SCRIPT_ERR_SIG_DER);
}
std::vector<unsigned char> vchSigCopy(vchSig.begin(), vchSig.begin() + vchSig.size() - 1);
if (!CPubKey::CheckLowS(vchSigCopy)) {
return set_error(serror, SCRIPT_ERR_SIG_HIGH_S);
}
return true;
}
bool static IsDefinedHashtypeSignature(const valtype &vchSig) {
if (vchSig.size() == 0) {
return false;
}
unsigned char nHashType = vchSig[vchSig.size() - 1] & (~(SIGHASH_ANYONECANPAY));
if (nHashType < SIGHASH_ALL || nHashType > SIGHASH_SINGLE)
return false;
return true;
}
bool CheckSignatureEncoding(const vector<unsigned char> &vchSig, unsigned int flags, ScriptError* serror) {
// Empty signature. Not strictly DER encoded, but allowed to provide a
// compact way to provide an invalid signature for use with CHECK(MULTI)SIG
if (vchSig.size() == 0) {
return true;
}
if ((flags & (SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_LOW_S | SCRIPT_VERIFY_STRICTENC)) != 0 && !IsValidSignatureEncoding(vchSig)) {
return set_error(serror, SCRIPT_ERR_SIG_DER);
} else if ((flags & SCRIPT_VERIFY_LOW_S) != 0 && !IsLowDERSignature(vchSig, serror)) {
// serror is set
return false;
} else if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsDefinedHashtypeSignature(vchSig)) {
return set_error(serror, SCRIPT_ERR_SIG_HASHTYPE);
}
return true;
}
bool static CheckPubKeyEncoding(const valtype &vchSig, unsigned int flags, ScriptError* serror) {
if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsCompressedOrUncompressedPubKey(vchSig)) {
return set_error(serror, SCRIPT_ERR_PUBKEYTYPE);
}
return true;
}
bool static CheckMinimalPush(const valtype& data, opcodetype opcode) {
if (data.size() == 0) {
// Could have used OP_0.
return opcode == OP_0;
} else if (data.size() == 1 && data[0] >= 1 && data[0] <= 16) {
// Could have used OP_1 .. OP_16.
return opcode == OP_1 + (data[0] - 1);
} else if (data.size() == 1 && data[0] == 0x81) {
// Could have used OP_1NEGATE.
return opcode == OP_1NEGATE;
} else if (data.size() <= 75) {
// Could have used a direct push (opcode indicating number of bytes pushed + those bytes).
return opcode == data.size();
} else if (data.size() <= 255) {
// Could have used OP_PUSHDATA.
return opcode == OP_PUSHDATA1;
} else if (data.size() <= 65535) {
// Could have used OP_PUSHDATA2.
return opcode == OP_PUSHDATA2;
}
return true;
}
bool EvalScript(vector<vector<unsigned char> >& stack, const CScript& script, unsigned int flags, const BaseSignatureChecker& checker, ScriptError* serror)
{
static const CScriptNum bnZero(0);
static const CScriptNum bnOne(1);
static const CScriptNum bnFalse(0);
static const CScriptNum bnTrue(1);
static const valtype vchFalse(0);
static const valtype vchZero(0);
static const valtype vchTrue(1, 1);
CScript::const_iterator pc = script.begin();
CScript::const_iterator pend = script.end();
CScript::const_iterator pbegincodehash = script.begin();
opcodetype opcode;
valtype vchPushValue;
vector<bool> vfExec;
vector<valtype> altstack;
set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);
if (script.size() > 10000)
return set_error(serror, SCRIPT_ERR_SCRIPT_SIZE);
int nOpCount = 0;
bool fRequireMinimal = (flags & SCRIPT_VERIFY_MINIMALDATA) != 0;
try
{
while (pc < pend)
{
bool fExec = !count(vfExec.begin(), vfExec.end(), false);
//
// Read instruction
//
if (!script.GetOp(pc, opcode, vchPushValue))
return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
if (vchPushValue.size() > MAX_SCRIPT_ELEMENT_SIZE)
return set_error(serror, SCRIPT_ERR_PUSH_SIZE);
// Note how OP_RESERVED does not count towards the opcode limit.
if (opcode > OP_16 && ++nOpCount > MAX_OPS_PER_SCRIPT)
return set_error(serror, SCRIPT_ERR_OP_COUNT);
if (opcode == OP_CAT ||
opcode == OP_SUBSTR ||
opcode == OP_LEFT ||
opcode == OP_RIGHT ||
opcode == OP_INVERT ||
opcode == OP_AND ||
opcode == OP_OR ||
opcode == OP_XOR ||
opcode == OP_2MUL ||
opcode == OP_2DIV ||
opcode == OP_MUL ||
opcode == OP_DIV ||
opcode == OP_MOD ||
opcode == OP_LSHIFT ||
opcode == OP_RSHIFT)
return set_error(serror, SCRIPT_ERR_DISABLED_OPCODE); // Disabled opcodes.
if (fExec && 0 <= opcode && opcode <= OP_PUSHDATA4) {
if (fRequireMinimal && !CheckMinimalPush(vchPushValue, opcode)) {
return set_error(serror, SCRIPT_ERR_MINIMALDATA);
}
stack.push_back(vchPushValue);
} else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF))
switch (opcode)
{
//
// Push value
//
case OP_1NEGATE:
case OP_1:
case OP_2:
case OP_3:
case OP_4:
case OP_5:
case OP_6:
case OP_7:
case OP_8:
case OP_9:
case OP_10:
case OP_11:
case OP_12:
case OP_13:
case OP_14:
case OP_15:
case OP_16:
{
// ( -- value)
CScriptNum bn((int)opcode - (int)(OP_1 - 1));
stack.push_back(bn.getvch());
// The result of these opcodes should always be the minimal way to push the data
// they push, so no need for a CheckMinimalPush here.
}
break;
//
// Control
//
case OP_NOP:
break;
case OP_CHECKLOCKTIMEVERIFY:
{
if (!(flags & SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY)) {
// not enabled; treat as a NOP2
if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS) {
return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS);
}
break;
}
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
// Note that elsewhere numeric opcodes are limited to
// operands in the range -2**31+1 to 2**31-1, however it is
// legal for opcodes to produce results exceeding that
// range. This limitation is implemented by CScriptNum's
// default 4-byte limit.
//
// If we kept to that limit we'd have a year 2038 problem,
// even though the nLockTime field in transactions
// themselves is uint32 which only becomes meaningless
// after the year 2106.
//
// Thus as a special case we tell CScriptNum to accept up
// to 5-byte bignums, which are good until 2**39-1, well
// beyond the 2**32-1 limit of the nLockTime field itself.
const CScriptNum nLockTime(stacktop(-1), fRequireMinimal, 5);
// In the rare event that the argument may be < 0 due to
// some arithmetic being done first, you can always use
// 0 MAX CHECKLOCKTIMEVERIFY.
if (nLockTime < 0)
return set_error(serror, SCRIPT_ERR_NEGATIVE_LOCKTIME);
// Actually compare the specified lock time with the transaction.
if (!checker.CheckLockTime(nLockTime))
return set_error(serror, SCRIPT_ERR_UNSATISFIED_LOCKTIME);
break;
}
case OP_NOP1: case OP_NOP3: case OP_NOP4: case OP_NOP5:
case OP_NOP6: case OP_NOP7: case OP_NOP8: case OP_NOP9: case OP_NOP10:
{
if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS)
return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS);
}
break;
case OP_IF:
case OP_NOTIF:
{
// <expression> if [statements] [else [statements]] endif
bool fValue = false;
if (fExec)
{
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
valtype& vch = stacktop(-1);
fValue = CastToBool(vch);
if (opcode == OP_NOTIF)
fValue = !fValue;
popstack(stack);
}
vfExec.push_back(fValue);
}
break;
case OP_ELSE:
{
if (vfExec.empty())
return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
vfExec.back() = !vfExec.back();
}
break;
case OP_ENDIF:
{
if (vfExec.empty())
return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
vfExec.pop_back();
}
break;
case OP_VERIFY:
{
// (true -- ) or
// (false -- false) and return
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
bool fValue = CastToBool(stacktop(-1));
if (fValue)
popstack(stack);
else
return set_error(serror, SCRIPT_ERR_VERIFY);
}
break;
case OP_RETURN:
{
return set_error(serror, SCRIPT_ERR_OP_RETURN);
}
break;
//
// Stack ops
//
case OP_TOALTSTACK:
{
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
altstack.push_back(stacktop(-1));
popstack(stack);
}
break;
case OP_FROMALTSTACK:
{
if (altstack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_ALTSTACK_OPERATION);
stack.push_back(altstacktop(-1));
popstack(altstack);
}
break;
case OP_2DROP:
{
// (x1 x2 -- )
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
popstack(stack);
popstack(stack);
}
break;
case OP_2DUP:
{
// (x1 x2 -- x1 x2 x1 x2)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch1 = stacktop(-2);
valtype vch2 = stacktop(-1);
stack.push_back(vch1);
stack.push_back(vch2);
}
break;
case OP_3DUP:
{
// (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)
if (stack.size() < 3)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch1 = stacktop(-3);
valtype vch2 = stacktop(-2);
valtype vch3 = stacktop(-1);
stack.push_back(vch1);
stack.push_back(vch2);
stack.push_back(vch3);
}
break;
case OP_2OVER:
{
// (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
if (stack.size() < 4)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch1 = stacktop(-4);
valtype vch2 = stacktop(-3);
stack.push_back(vch1);
stack.push_back(vch2);
}
break;
case OP_2ROT:
{
// (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
if (stack.size() < 6)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch1 = stacktop(-6);
valtype vch2 = stacktop(-5);
stack.erase(stack.end()-6, stack.end()-4);
stack.push_back(vch1);
stack.push_back(vch2);
}
break;
case OP_2SWAP:
{
// (x1 x2 x3 x4 -- x3 x4 x1 x2)
if (stack.size() < 4)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
swap(stacktop(-4), stacktop(-2));
swap(stacktop(-3), stacktop(-1));
}
break;
case OP_IFDUP:
{
// (x - 0 | x x)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-1);
if (CastToBool(vch))
stack.push_back(vch);
}
break;
case OP_DEPTH:
{
// -- stacksize
CScriptNum bn(stack.size());
stack.push_back(bn.getvch());
}
break;
case OP_DROP:
{
// (x -- )
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
popstack(stack);
}
break;
case OP_DUP:
{
// (x -- x x)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-1);
stack.push_back(vch);
}
break;
case OP_NIP:
{
// (x1 x2 -- x2)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
stack.erase(stack.end() - 2);
}
break;
case OP_OVER:
{
// (x1 x2 -- x1 x2 x1)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-2);
stack.push_back(vch);
}
break;
case OP_PICK:
case OP_ROLL:
{
// (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn)
// (xn ... x2 x1 x0 n - ... x2 x1 x0 xn)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
int n = CScriptNum(stacktop(-1), fRequireMinimal).getint();
popstack(stack);
if (n < 0 || n >= (int)stack.size())
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-n-1);
if (opcode == OP_ROLL)
stack.erase(stack.end()-n-1);
stack.push_back(vch);
}
break;
case OP_ROT:
{
// (x1 x2 x3 -- x2 x3 x1)
// x2 x1 x3 after first swap
// x2 x3 x1 after second swap
if (stack.size() < 3)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
swap(stacktop(-3), stacktop(-2));
swap(stacktop(-2), stacktop(-1));
}
break;
case OP_SWAP:
{
// (x1 x2 -- x2 x1)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
swap(stacktop(-2), stacktop(-1));
}
break;
case OP_TUCK:
{
// (x1 x2 -- x2 x1 x2)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-1);
stack.insert(stack.end()-2, vch);
}
break;
case OP_SIZE:
{
// (in -- in size)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
CScriptNum bn(stacktop(-1).size());
stack.push_back(bn.getvch());
}
break;
//
// Bitwise logic
//
case OP_EQUAL:
case OP_EQUALVERIFY:
//case OP_NOTEQUAL: // use OP_NUMNOTEQUAL
{
// (x1 x2 - bool)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype& vch1 = stacktop(-2);
valtype& vch2 = stacktop(-1);
bool fEqual = (vch1 == vch2);
// OP_NOTEQUAL is disabled because it would be too easy to say
// something like n != 1 and have some wiseguy pass in 1 with extra
// zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001)
//if (opcode == OP_NOTEQUAL)
// fEqual = !fEqual;
popstack(stack);
popstack(stack);
stack.push_back(fEqual ? vchTrue : vchFalse);
if (opcode == OP_EQUALVERIFY)
{
if (fEqual)
popstack(stack);
else
return set_error(serror, SCRIPT_ERR_EQUALVERIFY);
}
}
break;
//
// Numeric
//
case OP_1ADD:
case OP_1SUB:
case OP_NEGATE:
case OP_ABS:
case OP_NOT:
case OP_0NOTEQUAL:
{
// (in -- out)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
CScriptNum bn(stacktop(-1), fRequireMinimal);
switch (opcode)
{
case OP_1ADD: bn += bnOne; break;
case OP_1SUB: bn -= bnOne; break;
case OP_NEGATE: bn = -bn; break;
case OP_ABS: if (bn < bnZero) bn = -bn; break;
case OP_NOT: bn = (bn == bnZero); break;
case OP_0NOTEQUAL: bn = (bn != bnZero); break;
default: assert(!"invalid opcode"); break;
}
popstack(stack);
stack.push_back(bn.getvch());
}
break;
case OP_ADD:
case OP_SUB:
case OP_BOOLAND:
case OP_BOOLOR:
case OP_NUMEQUAL:
case OP_NUMEQUALVERIFY:
case OP_NUMNOTEQUAL:
case OP_LESSTHAN:
case OP_GREATERTHAN:
case OP_LESSTHANOREQUAL:
case OP_GREATERTHANOREQUAL:
case OP_MIN:
case OP_MAX:
{
// (x1 x2 -- out)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
CScriptNum bn1(stacktop(-2), fRequireMinimal);
CScriptNum bn2(stacktop(-1), fRequireMinimal);
CScriptNum bn(0);
switch (opcode)
{
case OP_ADD:
bn = bn1 + bn2;
break;
case OP_SUB:
bn = bn1 - bn2;
break;
case OP_BOOLAND: bn = (bn1 != bnZero && bn2 != bnZero); break;
case OP_BOOLOR: bn = (bn1 != bnZero || bn2 != bnZero); break;
case OP_NUMEQUAL: bn = (bn1 == bn2); break;
case OP_NUMEQUALVERIFY: bn = (bn1 == bn2); break;
case OP_NUMNOTEQUAL: bn = (bn1 != bn2); break;
case OP_LESSTHAN: bn = (bn1 < bn2); break;
case OP_GREATERTHAN: bn = (bn1 > bn2); break;
case OP_LESSTHANOREQUAL: bn = (bn1 <= bn2); break;
case OP_GREATERTHANOREQUAL: bn = (bn1 >= bn2); break;
case OP_MIN: bn = (bn1 < bn2 ? bn1 : bn2); break;
case OP_MAX: bn = (bn1 > bn2 ? bn1 : bn2); break;
default: assert(!"invalid opcode"); break;
}
popstack(stack);
popstack(stack);
stack.push_back(bn.getvch());
if (opcode == OP_NUMEQUALVERIFY)
{
if (CastToBool(stacktop(-1)))
popstack(stack);
else
return set_error(serror, SCRIPT_ERR_NUMEQUALVERIFY);
}
}
break;
case OP_WITHIN:
{
// (x min max -- out)
if (stack.size() < 3)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
CScriptNum bn1(stacktop(-3), fRequireMinimal);
CScriptNum bn2(stacktop(-2), fRequireMinimal);
CScriptNum bn3(stacktop(-1), fRequireMinimal);
bool fValue = (bn2 <= bn1 && bn1 < bn3);
popstack(stack);
popstack(stack);
popstack(stack);
stack.push_back(fValue ? vchTrue : vchFalse);
}
break;
//
// Crypto
//
case OP_RIPEMD160:
case OP_SHA1:
case OP_SHA256:
case OP_HASH160:
case OP_HASH256:
{
// (in -- hash)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype& vch = stacktop(-1);
valtype vchHash((opcode == OP_RIPEMD160 || opcode == OP_SHA1 || opcode == OP_HASH160) ? 20 : 32);
if (opcode == OP_RIPEMD160)
CRIPEMD160().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash));
else if (opcode == OP_SHA1)
CSHA1().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash));
else if (opcode == OP_SHA256)
CSHA256().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash));
else if (opcode == OP_HASH160)
CHash160().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash));
else if (opcode == OP_HASH256)
CHash256().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash));
popstack(stack);
stack.push_back(vchHash);
}
break;
case OP_CODESEPARATOR:
{
// Hash starts after the code separator
pbegincodehash = pc;
}
break;
case OP_CHECKSIG:
case OP_CHECKSIGVERIFY:
{
// (sig pubkey -- bool)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype& vchSig = stacktop(-2);
valtype& vchPubKey = stacktop(-1);
// Subset of script starting at the most recent codeseparator
CScript scriptCode(pbegincodehash, pend);
// Drop the signature, since there's no way for a signature to sign itself
scriptCode.FindAndDelete(CScript(vchSig));
if (!CheckSignatureEncoding(vchSig, flags, serror) || !CheckPubKeyEncoding(vchPubKey, flags, serror)) {
//serror is set
return false;
}
bool fSuccess = checker.CheckSig(vchSig, vchPubKey, scriptCode);
popstack(stack);
popstack(stack);
stack.push_back(fSuccess ? vchTrue : vchFalse);
if (opcode == OP_CHECKSIGVERIFY)
{
if (fSuccess)
popstack(stack);
else
return set_error(serror, SCRIPT_ERR_CHECKSIGVERIFY);
}
}
break;
case OP_CHECKMULTISIG:
case OP_CHECKMULTISIGVERIFY:
{
// ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool)
int i = 1;
if ((int)stack.size() < i)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
int nKeysCount = CScriptNum(stacktop(-i), fRequireMinimal).getint();
if (nKeysCount < 0 || nKeysCount > MAX_PUBKEYS_PER_MULTISIG)
return set_error(serror, SCRIPT_ERR_PUBKEY_COUNT);
nOpCount += nKeysCount;
if (nOpCount > MAX_OPS_PER_SCRIPT)
return set_error(serror, SCRIPT_ERR_OP_COUNT);
int ikey = ++i;
i += nKeysCount;
if ((int)stack.size() < i)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
int nSigsCount = CScriptNum(stacktop(-i), fRequireMinimal).getint();
if (nSigsCount < 0 || nSigsCount > nKeysCount)
return set_error(serror, SCRIPT_ERR_SIG_COUNT);
int isig = ++i;
i += nSigsCount;
if ((int)stack.size() < i)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
// Subset of script starting at the most recent codeseparator
CScript scriptCode(pbegincodehash, pend);
// Drop the signatures, since there's no way for a signature to sign itself
for (int k = 0; k < nSigsCount; k++)
{
valtype& vchSig = stacktop(-isig-k);
scriptCode.FindAndDelete(CScript(vchSig));
}
bool fSuccess = true;
while (fSuccess && nSigsCount > 0)
{
valtype& vchSig = stacktop(-isig);
valtype& vchPubKey = stacktop(-ikey);
// Note how this makes the exact order of pubkey/signature evaluation
// distinguishable by CHECKMULTISIG NOT if the STRICTENC flag is set.
// See the script_(in)valid tests for details.
if (!CheckSignatureEncoding(vchSig, flags, serror) || !CheckPubKeyEncoding(vchPubKey, flags, serror)) {
// serror is set
return false;
}
// Check signature
bool fOk = checker.CheckSig(vchSig, vchPubKey, scriptCode);
if (fOk) {
isig++;
nSigsCount--;
}
ikey++;
nKeysCount--;
// If there are more signatures left than keys left,
// then too many signatures have failed. Exit early,
// without checking any further signatures.
if (nSigsCount > nKeysCount)
fSuccess = false;
}
// Clean up stack of actual arguments
while (i-- > 1)
popstack(stack);
// A bug causes CHECKMULTISIG to consume one extra argument
// whose contents were not checked in any way.
//
// Unfortunately this is a potential source of mutability,
// so optionally verify it is exactly equal to zero prior
// to removing it from the stack.
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
if ((flags & SCRIPT_VERIFY_NULLDUMMY) && stacktop(-1).size())
return set_error(serror, SCRIPT_ERR_SIG_NULLDUMMY);
popstack(stack);
stack.push_back(fSuccess ? vchTrue : vchFalse);
if (opcode == OP_CHECKMULTISIGVERIFY)
{
if (fSuccess)
popstack(stack);
else
return set_error(serror, SCRIPT_ERR_CHECKMULTISIGVERIFY);
}
}
break;
default:
return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
}
// Size limits
if (stack.size() + altstack.size() > 1000)
return set_error(serror, SCRIPT_ERR_STACK_SIZE);
}
}
catch (...)
{
return set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);
}
if (!vfExec.empty())
return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
return set_success(serror);
}
namespace {
/**
* Wrapper that serializes like CTransaction, but with the modifications
* required for the signature hash done in-place
*/
class CTransactionSignatureSerializer {
private:
const CTransaction &txTo; //! reference to the spending transaction (the one being serialized)
const CScript &scriptCode; //! output script being consumed
const unsigned int nIn; //! input index of txTo being signed
const bool fAnyoneCanPay; //! whether the hashtype has the SIGHASH_ANYONECANPAY flag set
const bool fHashSingle; //! whether the hashtype is SIGHASH_SINGLE
const bool fHashNone; //! whether the hashtype is SIGHASH_NONE
public:
CTransactionSignatureSerializer(const CTransaction &txToIn, const CScript &scriptCodeIn, unsigned int nInIn, int nHashTypeIn) :
txTo(txToIn), scriptCode(scriptCodeIn), nIn(nInIn),
fAnyoneCanPay(!!(nHashTypeIn & SIGHASH_ANYONECANPAY)),
fHashSingle((nHashTypeIn & 0x1f) == SIGHASH_SINGLE),
fHashNone((nHashTypeIn & 0x1f) == SIGHASH_NONE) {}
/** Serialize the passed scriptCode, skipping OP_CODESEPARATORs */
template<typename S>
void SerializeScriptCode(S &s, int nType, int nVersion) const {
CScript::const_iterator it = scriptCode.begin();
CScript::const_iterator itBegin = it;
opcodetype opcode;
unsigned int nCodeSeparators = 0;
while (scriptCode.GetOp(it, opcode)) {
if (opcode == OP_CODESEPARATOR)
nCodeSeparators++;
}
::WriteCompactSize(s, scriptCode.size() - nCodeSeparators);
it = itBegin;
while (scriptCode.GetOp(it, opcode)) {
if (opcode == OP_CODESEPARATOR) {
s.write((char*)&itBegin[0], it-itBegin-1);
itBegin = it;
}
}
if (itBegin != scriptCode.end())
s.write((char*)&itBegin[0], it-itBegin);
}
/** Serialize an input of txTo */
template<typename S>
void SerializeInput(S &s, unsigned int nInput, int nType, int nVersion) const {
// In case of SIGHASH_ANYONECANPAY, only the input being signed is serialized
if (fAnyoneCanPay)
nInput = nIn;
// Serialize the prevout
::Serialize(s, txTo.vin[nInput].prevout, nType, nVersion);
// Serialize the script
if (nInput != nIn)
// Blank out other inputs' signatures
::Serialize(s, CScriptBase(), nType, nVersion);
else
SerializeScriptCode(s, nType, nVersion);
// Serialize the nSequence
if (nInput != nIn && (fHashSingle || fHashNone))
// let the others update at will
::Serialize(s, (int)0, nType, nVersion);
else
::Serialize(s, txTo.vin[nInput].nSequence, nType, nVersion);
}
/** Serialize an output of txTo */
template<typename S>
void SerializeOutput(S &s, unsigned int nOutput, int nType, int nVersion) const {
if (fHashSingle && nOutput != nIn)
// Do not lock-in the txout payee at other indices as txin
::Serialize(s, CTxOut(), nType, nVersion);
else
::Serialize(s, txTo.vout[nOutput], nType, nVersion);
}
/** Serialize txTo */
template<typename S>
void Serialize(S &s, int nType, int nVersion) const {
// Serialize nVersion
::Serialize(s, txTo.nVersion, nType, nVersion);
// Serialize vin
unsigned int nInputs = fAnyoneCanPay ? 1 : txTo.vin.size();
::WriteCompactSize(s, nInputs);
for (unsigned int nInput = 0; nInput < nInputs; nInput++)
SerializeInput(s, nInput, nType, nVersion);
// Serialize vout
unsigned int nOutputs = fHashNone ? 0 : (fHashSingle ? nIn+1 : txTo.vout.size());
::WriteCompactSize(s, nOutputs);
for (unsigned int nOutput = 0; nOutput < nOutputs; nOutput++)
SerializeOutput(s, nOutput, nType, nVersion);
// Serialize nLockTime
::Serialize(s, txTo.nLockTime, nType, nVersion);
}
};
} // anon namespace
uint256 SignatureHash(const CScript& scriptCode, const CTransaction& txTo, unsigned int nIn, int nHashType, size_t* nHashedOut)
{
static const uint256 one(uint256S("0000000000000000000000000000000000000000000000000000000000000001"));
if (nIn >= txTo.vin.size()) {
// nIn out of range
return one;
}
// Check for invalid use of SIGHASH_SINGLE
if ((nHashType & 0x1f) == SIGHASH_SINGLE) {
if (nIn >= txTo.vout.size()) {
// nOut out of range
return one;
}
}
// Wrapper to serialize only the necessary parts of the transaction being signed
CTransactionSignatureSerializer txTmp(txTo, scriptCode, nIn, nHashType);
// Serialize and hash
CHashWriter ss(SER_GETHASH, 0);
ss << txTmp << nHashType;
if (nHashedOut != NULL)
*nHashedOut = ss.GetNumBytesHashed();
return ss.GetHash();
}
bool TransactionSignatureChecker::VerifySignature(const std::vector<unsigned char>& vchSig, const CPubKey& pubkey, const uint256& sighash) const
{
return pubkey.Verify(sighash, vchSig);
}
bool TransactionSignatureChecker::CheckSig(const vector<unsigned char>& vchSigIn, const vector<unsigned char>& vchPubKey,
const CScript& scriptCode) const
{
CPubKey pubkey(vchPubKey);
if (!pubkey.IsValid())
return false;
// Hash type is one byte tacked on to the end of the signature
vector<unsigned char> vchSig(vchSigIn);
if (vchSig.empty())
return false;
int nHashType = vchSig.back();
vchSig.pop_back();
size_t nHashed = 0;
uint256 sighash = SignatureHash(scriptCode, *txTo, nIn, nHashType, &nHashed);
nBytesHashed += nHashed;
++nSigops;
if (!VerifySignature(vchSig, pubkey, sighash))
return false;
return true;
}
bool TransactionSignatureChecker::CheckLockTime(const CScriptNum& nLockTime) const
{
// There are two kinds of nLockTime: lock-by-blockheight
// and lock-by-blocktime, distinguished by whether
// nLockTime < LOCKTIME_THRESHOLD.
//
// We want to compare apples to apples, so fail the script
// unless the type of nLockTime being tested is the same as
// the nLockTime in the transaction.
if (!(
(txTo->nLockTime < LOCKTIME_THRESHOLD && nLockTime < LOCKTIME_THRESHOLD) ||
(txTo->nLockTime >= LOCKTIME_THRESHOLD && nLockTime >= LOCKTIME_THRESHOLD)
))
return false;
// Now that we know we're comparing apples-to-apples, the
// comparison is a simple numeric one.
if (nLockTime > (int64_t)txTo->nLockTime)
return false;
// Finally the nLockTime feature can be disabled and thus
// CHECKLOCKTIMEVERIFY bypassed if every txin has been
// finalized by setting nSequence to maxint. The
// transaction would be allowed into the blockchain, making
// the opcode ineffective.
//
// Testing if this vin is not final is sufficient to
// prevent this condition. Alternatively we could test all
// inputs, but testing just this input minimizes the data
// required to prove correct CHECKLOCKTIMEVERIFY execution.
if (txTo->vin[nIn].IsFinal())
return false;
return true;
}
bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, unsigned int flags, const BaseSignatureChecker& checker, ScriptError* serror)
{
set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);
if ((flags & SCRIPT_VERIFY_SIGPUSHONLY) != 0 && !scriptSig.IsPushOnly()) {
return set_error(serror, SCRIPT_ERR_SIG_PUSHONLY);
}
vector<vector<unsigned char> > stack, stackCopy;
if (!EvalScript(stack, scriptSig, flags, checker, serror))
// serror is set
return false;
if (flags & SCRIPT_VERIFY_P2SH)
stackCopy = stack;
if (!EvalScript(stack, scriptPubKey, flags, checker, serror))
// serror is set
return false;
if (stack.empty())
return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
if (CastToBool(stack.back()) == false)
return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
// Additional validation for spend-to-script-hash transactions:
if ((flags & SCRIPT_VERIFY_P2SH) && scriptPubKey.IsPayToScriptHash())
{
// scriptSig must be literals-only or validation fails
if (!scriptSig.IsPushOnly())
return set_error(serror, SCRIPT_ERR_SIG_PUSHONLY);
// Restore stack.
swap(stack, stackCopy);
// stack cannot be empty here, because if it was the
// P2SH HASH <> EQUAL scriptPubKey would be evaluated with
// an empty stack and the EvalScript above would return false.
assert(!stack.empty());
const valtype& pubKeySerialized = stack.back();
CScript pubKey2(pubKeySerialized.begin(), pubKeySerialized.end());
popstack(stack);
if (!EvalScript(stack, pubKey2, flags, checker, serror))
// serror is set
return false;
if (stack.empty())
return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
if (!CastToBool(stack.back()))
return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
}
// The CLEANSTACK check is only performed after potential P2SH evaluation,
// as the non-P2SH evaluation of a P2SH script will obviously not result in
// a clean stack (the P2SH inputs remain).
if ((flags & SCRIPT_VERIFY_CLEANSTACK) != 0) {
// Disallow CLEANSTACK without P2SH, as otherwise a switch CLEANSTACK->P2SH+CLEANSTACK
// would be possible, which is not a softfork (and P2SH should be one).
assert((flags & SCRIPT_VERIFY_P2SH) != 0);
if (stack.size() != 1) {
return set_error(serror, SCRIPT_ERR_CLEANSTACK);
}
}
return set_success(serror);
}
#endif