|
|
|
function integerToBytes(i, len) {
|
|
|
|
var bytes = i.toByteArrayUnsigned();
|
|
|
|
|
|
|
|
if (len < bytes.length) {
|
|
|
|
bytes = bytes.slice(bytes.length-len);
|
|
|
|
} else while (len > bytes.length) {
|
|
|
|
bytes.unshift(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return bytes;
|
|
|
|
};
|
|
|
|
|
|
|
|
ECFieldElementFp.prototype.getByteLength = function () {
|
|
|
|
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
|
|
|
|
};
|
|
|
|
|
|
|
|
ECPointFp.prototype.getEncoded = function (compressed) {
|
|
|
|
var x = this.getX().toBigInteger();
|
|
|
|
var y = this.getY().toBigInteger();
|
|
|
|
|
|
|
|
// Get value as a 32-byte Buffer
|
|
|
|
// Fixed length based on a patch by bitaddress.org and Casascius
|
|
|
|
var enc = integerToBytes(x, 32);
|
|
|
|
|
|
|
|
if (compressed) {
|
|
|
|
if (y.isEven()) {
|
|
|
|
// Compressed even pubkey
|
|
|
|
// M = 02 || X
|
|
|
|
enc.unshift(0x02);
|
|
|
|
} else {
|
|
|
|
// Compressed uneven pubkey
|
|
|
|
// M = 03 || X
|
|
|
|
enc.unshift(0x03);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Uncompressed pubkey
|
|
|
|
// M = 04 || X || Y
|
|
|
|
enc.unshift(0x04);
|
|
|
|
enc = enc.concat(integerToBytes(y, 32));
|
|
|
|
}
|
|
|
|
return enc;
|
|
|
|
};
|
|
|
|
|
|
|
|
ECPointFp.decodeFrom = function (ecparams, enc) {
|
|
|
|
var type = enc[0];
|
|
|
|
var dataLen = enc.length-1;
|
|
|
|
|
|
|
|
// Extract x and y as byte arrays
|
|
|
|
if (type === 4) {
|
|
|
|
var xBa = enc.slice(1, 1 + dataLen/2),
|
|
|
|
yBa = enc.slice(1 + dataLen/2, 1 + dataLen),
|
|
|
|
x = BigInteger.fromByteArrayUnsigned(xBa),
|
|
|
|
y = BigInteger.fromByteArrayUnsigned(yBa);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
var xBa = enc.slice(1),
|
|
|
|
x = BigInteger.fromByteArrayUnsigned(xBa),
|
|
|
|
p = ecparams.getQ(),
|
|
|
|
xCubedPlus7 = x.multiply(x).multiply(x).add(new BigInteger('7')).mod(p),
|
|
|
|
pPlus1Over4 = p.add(new BigInteger('1'))
|
|
|
|
.divide(new BigInteger('4')),
|
|
|
|
y = xCubedPlus7.modPow(pPlus1Over4,p);
|
|
|
|
if (y.mod(new BigInteger('2')).toString() != ''+(type % 2)) {
|
|
|
|
y = p.subtract(y)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return point
|
|
|
|
return new ECPointFp(ecparams,
|
|
|
|
ecparams.fromBigInteger(x),
|
|
|
|
ecparams.fromBigInteger(y));
|
|
|
|
};
|
|
|
|
|
|
|
|
ECPointFp.prototype.add2D = function (b) {
|
|
|
|
if(this.isInfinity()) return b;
|
|
|
|
if(b.isInfinity()) return this;
|
|
|
|
|
|
|
|
if (this.x.equals(b.x)) {
|
|
|
|
if (this.y.equals(b.y)) {
|
|
|
|
// this = b, i.e. this must be doubled
|
|
|
|
return this.twice();
|
|
|
|
}
|
|
|
|
// this = -b, i.e. the result is the point at infinity
|
|
|
|
return this.curve.getInfinity();
|
|
|
|
}
|
|
|
|
|
|
|
|
var x_x = b.x.subtract(this.x);
|
|
|
|
var y_y = b.y.subtract(this.y);
|
|
|
|
var gamma = y_y.divide(x_x);
|
|
|
|
|
|
|
|
var x3 = gamma.square().subtract(this.x).subtract(b.x);
|
|
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
|
|
|
|
return new ECPointFp(this.curve, x3, y3);
|
|
|
|
};
|
|
|
|
|
|
|
|
ECPointFp.prototype.twice2D = function () {
|
|
|
|
if (this.isInfinity()) return this;
|
|
|
|
if (this.y.toBigInteger().signum() == 0) {
|
|
|
|
// if y1 == 0, then (x1, y1) == (x1, -y1)
|
|
|
|
// and hence this = -this and thus 2(x1, y1) == infinity
|
|
|
|
return this.curve.getInfinity();
|
|
|
|
}
|
|
|
|
|
|
|
|
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
|
|
|
|
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
|
|
|
|
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
|
|
|
|
|
|
|
|
var x3 = gamma.square().subtract(this.x.multiply(TWO));
|
|
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
|
|
|
|
return new ECPointFp(this.curve, x3, y3);
|
|
|
|
};
|
|
|
|
|
|
|
|
ECPointFp.prototype.multiply2D = function (k) {
|
|
|
|
if(this.isInfinity()) return this;
|
|
|
|
if(k.signum() == 0) return this.curve.getInfinity();
|
|
|
|
|
|
|
|
var e = k;
|
|
|
|
var h = e.multiply(new BigInteger("3"));
|
|
|
|
|
|
|
|
var neg = this.negate();
|
|
|
|
var R = this;
|
|
|
|
|
|
|
|
var i;
|
|
|
|
for (i = h.bitLength() - 2; i > 0; --i) {
|
|
|
|
R = R.twice();
|
|
|
|
|
|
|
|
var hBit = h.testBit(i);
|
|
|
|
var eBit = e.testBit(i);
|
|
|
|
|
|
|
|
if (hBit != eBit) {
|
|
|
|
R = R.add2D(hBit ? this : neg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return R;
|
|
|
|
};
|
|
|
|
|
|
|
|
ECPointFp.prototype.isOnCurve = function () {
|
|
|
|
var x = this.getX().toBigInteger();
|
|
|
|
var y = this.getY().toBigInteger();
|
|
|
|
var a = this.curve.getA().toBigInteger();
|
|
|
|
var b = this.curve.getB().toBigInteger();
|
|
|
|
var n = this.curve.getQ();
|
|
|
|
var lhs = y.multiply(y).mod(n);
|
|
|
|
var rhs = x.multiply(x).multiply(x)
|
|
|
|
.add(a.multiply(x)).add(b).mod(n);
|
|
|
|
return lhs.equals(rhs);
|
|
|
|
};
|
|
|
|
|
|
|
|
ECPointFp.prototype.toString = function () {
|
|
|
|
return '('+this.getX().toBigInteger().toString()+','+
|
|
|
|
this.getY().toBigInteger().toString()+')';
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Validate an elliptic curve point.
|
|
|
|
*
|
|
|
|
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
|
|
|
|
*/
|
|
|
|
ECPointFp.prototype.validate = function () {
|
|
|
|
var n = this.curve.getQ();
|
|
|
|
|
|
|
|
// Check Q != O
|
|
|
|
if (this.isInfinity()) {
|
|
|
|
throw new Error("Point is at infinity.");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check coordinate bounds
|
|
|
|
var x = this.getX().toBigInteger();
|
|
|
|
var y = this.getY().toBigInteger();
|
|
|
|
if (x.compareTo(BigInteger.ONE) < 0 ||
|
|
|
|
x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
|
|
throw new Error('x coordinate out of bounds');
|
|
|
|
}
|
|
|
|
if (y.compareTo(BigInteger.ONE) < 0 ||
|
|
|
|
y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
|
|
throw new Error('y coordinate out of bounds');
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check y^2 = x^3 + ax + b (mod n)
|
|
|
|
if (!this.isOnCurve()) {
|
|
|
|
throw new Error("Point is not on the curve.");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check nQ = 0 (Q is a scalar multiple of G)
|
|
|
|
if (this.multiply(n).isInfinity()) {
|
|
|
|
// TODO: This check doesn't work - fix.
|
|
|
|
throw new Error("Point is not a scalar multiple of G.");
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
};
|
|
|
|
|
|
|
|
function dmp(v) {
|
|
|
|
if (!(v instanceof BigInteger)) v = v.toBigInteger();
|
|
|
|
return Crypto.util.bytesToHex(v.toByteArrayUnsigned());
|
|
|
|
};
|
|
|
|
|
|
|
|
Bitcoin.ECDSA = (function () {
|
|
|
|
var ecparams = getSECCurveByName("secp256k1");
|
|
|
|
var rng = new SecureRandom();
|
|
|
|
|
|
|
|
var P_OVER_FOUR = null;
|
|
|
|
|
|
|
|
function implShamirsTrick(P, k, Q, l)
|
|
|
|
{
|
|
|
|
var m = Math.max(k.bitLength(), l.bitLength());
|
|
|
|
var Z = P.add2D(Q);
|
|
|
|
var R = P.curve.getInfinity();
|
|
|
|
|
|
|
|
for (var i = m - 1; i >= 0; --i) {
|
|
|
|
R = R.twice2D();
|
|
|
|
|
|
|
|
R.z = BigInteger.ONE;
|
|
|
|
|
|
|
|
if (k.testBit(i)) {
|
|
|
|
if (l.testBit(i)) {
|
|
|
|
R = R.add2D(Z);
|
|
|
|
} else {
|
|
|
|
R = R.add2D(P);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (l.testBit(i)) {
|
|
|
|
R = R.add2D(Q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return R;
|
|
|
|
};
|
|
|
|
|
|
|
|
var ECDSA = {
|
|
|
|
getBigRandom: function (limit) {
|
|
|
|
return new BigInteger(limit.bitLength(), rng)
|
|
|
|
.mod(limit.subtract(BigInteger.ONE))
|
|
|
|
.add(BigInteger.ONE)
|
|
|
|
;
|
|
|
|
},
|
|
|
|
sign: function (hash, priv) {
|
|
|
|
var d = priv;
|
|
|
|
var n = ecparams.getN();
|
|
|
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
|
|
|
|
|
|
|
do {
|
|
|
|
var k = ECDSA.getBigRandom(n);
|
|
|
|
var G = ecparams.getG();
|
|
|
|
var Q = G.multiply(k);
|
|
|
|
var r = Q.getX().toBigInteger().mod(n);
|
|
|
|
} while (r.compareTo(BigInteger.ZERO) <= 0);
|
|
|
|
|
|
|
|
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
|
|
|
|
|
|
|
|
return ECDSA.serializeSig(r, s);
|
|
|
|
},
|
|
|
|
|
|
|
|
verify: function (hash, sig, pubkey) {
|
|
|
|
var r,s;
|
|
|
|
if (Bitcoin.Util.isArray(sig)) {
|
|
|
|
var obj = ECDSA.parseSig(sig);
|
|
|
|
r = obj.r;
|
|
|
|
s = obj.s;
|
|
|
|
} else if ("object" === typeof sig && sig.r && sig.s) {
|
|
|
|
r = sig.r;
|
|
|
|
s = sig.s;
|
|
|
|
} else {
|
|
|
|
throw "Invalid value for signature";
|
|
|
|
}
|
|
|
|
|
|
|
|
var Q;
|
|
|
|
if (pubkey instanceof ECPointFp) {
|
|
|
|
Q = pubkey;
|
|
|
|
} else if (Bitcoin.Util.isArray(pubkey)) {
|
|
|
|
Q = ECPointFp.decodeFrom(ecparams.getCurve(), pubkey);
|
|
|
|
} else {
|
|
|
|
throw "Invalid format for pubkey value, must be byte array or ECPointFp";
|
|
|
|
}
|
|
|
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
|
|
|
|
|
|
|
return ECDSA.verifyRaw(e, r, s, Q);
|
|
|
|
},
|
|
|
|
|
|
|
|
verifyRaw: function (e, r, s, Q) {
|
|
|
|
var n = ecparams.getN();
|
|
|
|
var G = ecparams.getG();
|
|
|
|
|
|
|
|
if (r.compareTo(BigInteger.ONE) < 0 ||
|
|
|
|
r.compareTo(n) >= 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (s.compareTo(BigInteger.ONE) < 0 ||
|
|
|
|
s.compareTo(n) >= 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
var c = s.modInverse(n);
|
|
|
|
|
|
|
|
var u1 = e.multiply(c).mod(n);
|
|
|
|
var u2 = r.multiply(c).mod(n);
|
|
|
|
|
|
|
|
// TODO(!!!): For some reason Shamir's trick isn't working with
|
|
|
|
// signed message verification!? Probably an implementation
|
|
|
|
// error!
|
|
|
|
//var point = implShamirsTrick(G, u1, Q, u2);
|
|
|
|
var point = G.multiply(u1).add(Q.multiply(u2));
|
|
|
|
|
|
|
|
var v = point.getX().toBigInteger().mod(n);
|
|
|
|
|
|
|
|
return v.equals(r);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Serialize a signature into DER format.
|
|
|
|
*
|
|
|
|
* Takes two BigIntegers representing r and s and returns a byte array.
|
|
|
|
*/
|
|
|
|
serializeSig: function (r, s) {
|
|
|
|
var rBa = r.toByteArraySigned();
|
|
|
|
var sBa = s.toByteArraySigned();
|
|
|
|
|
|
|
|
var sequence = [];
|
|
|
|
sequence.push(0x02); // INTEGER
|
|
|
|
sequence.push(rBa.length);
|
|
|
|
sequence = sequence.concat(rBa);
|
|
|
|
|
|
|
|
sequence.push(0x02); // INTEGER
|
|
|
|
sequence.push(sBa.length);
|
|
|
|
sequence = sequence.concat(sBa);
|
|
|
|
|
|
|
|
sequence.unshift(sequence.length);
|
|
|
|
sequence.unshift(0x30); // SEQUENCE
|
|
|
|
|
|
|
|
return sequence;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Parses a byte array containing a DER-encoded signature.
|
|
|
|
*
|
|
|
|
* This function will return an object of the form:
|
|
|
|
*
|
|
|
|
* {
|
|
|
|
* r: BigInteger,
|
|
|
|
* s: BigInteger
|
|
|
|
* }
|
|
|
|
*/
|
|
|
|
parseSig: function (sig) {
|
|
|
|
var cursor;
|
|
|
|
if (sig[0] != 0x30)
|
|
|
|
throw new Error("Signature not a valid DERSequence");
|
|
|
|
|
|
|
|
cursor = 2;
|
|
|
|
if (sig[cursor] != 0x02)
|
|
|
|
throw new Error("First element in signature must be a DERInteger");;
|
|
|
|
var rBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
|
|
|
|
|
|
|
|
cursor += 2+sig[cursor+1];
|
|
|
|
if (sig[cursor] != 0x02)
|
|
|
|
throw new Error("Second element in signature must be a DERInteger");
|
|
|
|
var sBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]);
|
|
|
|
|
|
|
|
cursor += 2+sig[cursor+1];
|
|
|
|
|
|
|
|
//if (cursor != sig.length)
|
|
|
|
// throw new Error("Extra bytes in signature");
|
|
|
|
|
|
|
|
var r = BigInteger.fromByteArrayUnsigned(rBa);
|
|
|
|
var s = BigInteger.fromByteArrayUnsigned(sBa);
|
|
|
|
|
|
|
|
return {r: r, s: s};
|
|
|
|
},
|
|
|
|
|
|
|
|
parseSigCompact: function (sig) {
|
|
|
|
if (sig.length !== 65) {
|
|
|
|
throw "Signature has the wrong length";
|
|
|
|
}
|
|
|
|
|
|
|
|
// Signature is prefixed with a type byte storing three bits of
|
|
|
|
// information.
|
|
|
|
var i = sig[0] - 27;
|
|
|
|
if (i < 0 || i > 7) {
|
|
|
|
throw "Invalid signature type";
|
|
|
|
}
|
|
|
|
|
|
|
|
var n = ecparams.getN();
|
|
|
|
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n);
|
|
|
|
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n);
|
|
|
|
|
|
|
|
return {r: r, s: s, i: i};
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Recover a public key from a signature.
|
|
|
|
*
|
|
|
|
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
|
|
|
|
* Key Recovery Operation".
|
|
|
|
*
|
|
|
|
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
|
|
|
*/
|
|
|
|
recoverPubKey: function (r, s, hash, i) {
|
|
|
|
// The recovery parameter i has two bits.
|
|
|
|
i = i & 3;
|
|
|
|
|
|
|
|
// The less significant bit specifies whether the y coordinate
|
|
|
|
// of the compressed point is even or not.
|
|
|
|
var isYEven = i & 1;
|
|
|
|
|
|
|
|
// The more significant bit specifies whether we should use the
|
|
|
|
// first or second candidate key.
|
|
|
|
var isSecondKey = i >> 1;
|
|
|
|
|
|
|
|
var n = ecparams.getN();
|
|
|
|
var G = ecparams.getG();
|
|
|
|
var curve = ecparams.getCurve();
|
|
|
|
var p = curve.getQ();
|
|
|
|
var a = curve.getA().toBigInteger();
|
|
|
|
var b = curve.getB().toBigInteger();
|
|
|
|
|
|
|
|
// We precalculate (p + 1) / 4 where p is if the field order
|
|
|
|
if (!P_OVER_FOUR) {
|
|
|
|
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
|
|
|
|
}
|
|
|
|
|
|
|
|
// 1.1 Compute x
|
|
|
|
var x = isSecondKey ? r.add(n) : r;
|
|
|
|
|
|
|
|
// 1.3 Convert x to point
|
|
|
|
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p);
|
|
|
|
var beta = alpha.modPow(P_OVER_FOUR, p);
|
|
|
|
|
|
|
|
var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2);
|
|
|
|
// If beta is even, but y isn't or vice versa, then convert it,
|
|
|
|
// otherwise we're done and y == beta.
|
|
|
|
var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta);
|
|
|
|
|
|
|
|
// 1.4 Check that nR is at infinity
|
|
|
|
var R = new ECPointFp(curve,
|
|
|
|
curve.fromBigInteger(x),
|
|
|
|
curve.fromBigInteger(y));
|
|
|
|
R.validate();
|
|
|
|
|
|
|
|
// 1.5 Compute e from M
|
|
|
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
|
|
|
var eNeg = BigInteger.ZERO.subtract(e).mod(n);
|
|
|
|
|
|
|
|
// 1.6 Compute Q = r^-1 (sR - eG)
|
|
|
|
var rInv = r.modInverse(n);
|
|
|
|
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv);
|
|
|
|
|
|
|
|
Q.validate();
|
|
|
|
if (!ECDSA.verifyRaw(e, r, s, Q)) {
|
|
|
|
throw "Pubkey recovery unsuccessful";
|
|
|
|
}
|
|
|
|
|
|
|
|
var pubKey = new Bitcoin.ECKey();
|
|
|
|
pubKey.pub = Q;
|
|
|
|
return pubKey;
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculate pubkey extraction parameter.
|
|
|
|
*
|
|
|
|
* When extracting a pubkey from a signature, we have to
|
|
|
|
* distinguish four different cases. Rather than putting this
|
|
|
|
* burden on the verifier, Bitcoin includes a 2-bit value with the
|
|
|
|
* signature.
|
|
|
|
*
|
|
|
|
* This function simply tries all four cases and returns the value
|
|
|
|
* that resulted in a successful pubkey recovery.
|
|
|
|
*/
|
|
|
|
calcPubkeyRecoveryParam: function (address, r, s, hash)
|
|
|
|
{
|
|
|
|
for (var i = 0; i < 4; i++) {
|
|
|
|
try {
|
|
|
|
var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i);
|
|
|
|
if (pubkey.getBitcoinAddress().toString() == address) {
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
} catch (e) {}
|
|
|
|
}
|
|
|
|
throw "Unable to find valid recovery factor";
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
return ECDSA;
|
|
|
|
})();
|