Bitcore provides a very simple API for creating transactions. We expect this API to be accessible for developers without knowing the working internals of bitcoin in deep. What follows is a small introduction to transactions with some basic knowledge required to use this API.
A Transaction contains a set of inputs and a set of outputs. Each input contains a reference to another transaction's output, and a signature that allows the value referenced in that ouput to be used in this transaction.
Note also that an output can be used only once. That's why there's a concept of "change address" in the bitcoin ecosystem: if an output of 10 BTC is available for me to spend, but I only need to transmit 1 BTC, I'll create a transaction with two outputs, one with 1 BTC that I want to spend, and the other with 9 BTC to a change address, so I can spend this 9 BTC with another private key that I own.
So, in order to transmit a valid transaction, you must know what other transactions on the network store outputs that have not been spent and that are available for you to spend (meaning that you have the set of keys that can validate you own those funds). The unspent outputs are usually referred to as "utxo"s.
You can take a look at the javadocs for the [Transaction class here](link missing).
## Input
Transaction inputs are instances of either [Input](https://github.com/bitpay/bitcore/tree/master/lib/transaction/input) or its subclasses. The internal workings of it can be understood from the [API reference](link missing).
## Output
Transaction outputs are a very thin wrap around the information provided by a transaction output: its script and its output amount.
To send a transaction to a multisig address, the API is the same as in the above example. To spend outputs that require multiple signatures, the process needs extra information: the public keys of the signers that can unlock that output.
There are a number of data structures being stored internally in a `Transaction` instance. These are kept up to date and change through successive calls to its methods.
If you have a larger set of unspent outputs, only some of them will be selected to fulfill the amount. This is done by storing a cache of unspent outputs in a protected member called `_utxos`. When the `to()` method is called, some of these outputs will be selected to pay the requested amount to the appropriate address.
We're debating an API for Merge Avoidance, CoinJoin, Smart contracts, CoinSwap, and Stealth Addresses. We're expecting to have all of them by some time in early 2015. First draft implementations of Payment Channel smart contracts extensions to this library are already being implemented independently.