require('classtool'); function spec(b) { var assert = require('assert'); var config = b.config || require('./config'); var log = b.log || require('./util/log'); var Opcode = b.Opcode || require('./Opcode').class(); var buffertools = b.buffertools || require('buffertools'); // Make opcodes available as pseudo-constants for (var i in Opcode.map) { eval(i + " = " + Opcode.map[i] + ";"); } var bignum = b.bignum || require('bignum'); var Util = b.Util || require('./util/util'); var Script = require('./Script').class(); function ScriptInterpreter() { this.stack = []; this.disableUnsafeOpcodes = true; }; ScriptInterpreter.prototype.eval = function eval(script, tx, inIndex, hashType, callback) { if ("function" !== typeof callback) { throw new Error("ScriptInterpreter.eval() requires a callback"); } var pc = 0; var execStack = []; var altStack = []; var hashStart = 0; var opCount = 0; if (script.buffer.length > 10000) { callback(new Error("Oversized script (> 10k bytes)")); return this; } // Start execution by running the first step executeStep.call(this, callback); function executeStep(cb) { // Once all chunks have been processed, execution ends if (pc >= script.chunks.length) { // Execution stack must be empty at the end of the script if (execStack.length) { cb(new Error("Execution stack ended non-empty")); return; } // Execution successful (Note that we still have to check whether the // final stack contains a truthy value.) cb(null); return; } try { // The execution bit is true if there are no "false" values in the // execution stack. (A "false" value indicates that we're in the // inactive branch of an if statement.) var exec = !~execStack.indexOf(false); var opcode = script.chunks[pc++]; if (opcode.length > 520) { throw new Error("Max push value size exceeded (>520)"); } if (opcode > OP_16 && ++opCount > 201) { throw new Error("Opcode limit exceeded (>200)"); } if (this.disableUnsafeOpcodes && "number" === typeof opcode && (opcode === OP_CAT || opcode === OP_SUBSTR || opcode === OP_LEFT || opcode === OP_RIGHT || opcode === OP_INVERT || opcode === OP_AND || opcode === OP_OR || opcode === OP_XOR || opcode === OP_2MUL || opcode === OP_2DIV || opcode === OP_MUL || opcode === OP_DIV || opcode === OP_MOD || opcode === OP_LSHIFT || opcode === OP_RSHIFT)) { throw new Error("Encountered a disabled opcode"); } if (exec && Buffer.isBuffer(opcode)) this.stack.push(opcode); else if (exec || (OP_IF <= opcode && opcode <= OP_ENDIF)) switch (opcode) { case OP_0: this.stack.push(new Buffer([])); break; case OP_1NEGATE: case OP_1: case OP_2: case OP_3: case OP_4: case OP_5: case OP_6: case OP_7: case OP_8: case OP_9: case OP_10: case OP_11: case OP_12: case OP_13: case OP_14: case OP_15: case OP_16: this.stack.push(bigintToBuffer(opcode - OP_1 + 1)); break; case OP_NOP: case OP_NOP1: case OP_NOP2: case OP_NOP3: case OP_NOP4: case OP_NOP5: case OP_NOP6: case OP_NOP7: case OP_NOP8: case OP_NOP9: case OP_NOP10: break; case OP_IF: case OP_NOTIF: // if [statements] [else [statements]] endif var value = false; if (exec) { value = castBool(this.stackPop()); if (opcode === OP_NOTIF) { value = !value; } } execStack.push(value); break; case OP_ELSE: if (execStack.length < 1) { throw new Error("Unmatched OP_ELSE"); } execStack[execStack.length - 1] = !execStack[execStack.length - 1]; break; case OP_ENDIF: if (execStack.length < 1) { throw new Error("Unmatched OP_ENDIF"); } execStack.pop(); break; case OP_VERIFY: var value = castBool(this.stackTop()); if (value) { this.stackPop(); } else { throw new Error("OP_VERIFY negative"); } break; case OP_RETURN: throw new Error("OP_RETURN"); case OP_TOALTSTACK: altStack.push(this.stackPop()); break; case OP_FROMALTSTACK: if (altStack.length < 1) { throw new Error("OP_FROMALTSTACK with alt stack empty"); } this.stack.push(altStack.pop()); break; case OP_2DROP: // (x1 x2 -- ) this.stackPop(); this.stackPop(); break; case OP_2DUP: // (x1 x2 -- x1 x2 x1 x2) var v1 = this.stackTop(2); var v2 = this.stackTop(1); this.stack.push(v1); this.stack.push(v2); break; case OP_3DUP: // (x1 x2 -- x1 x2 x1 x2) var v1 = this.stackTop(3); var v2 = this.stackTop(2); var v3 = this.stackTop(1); this.stack.push(v1); this.stack.push(v2); this.stack.push(v3); break; case OP_2OVER: // (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) var v1 = this.stackTop(4); var v2 = this.stackTop(3); this.stack.push(v1); this.stack.push(v2); break; case OP_2ROT: // (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) var v1 = this.stackTop(6); var v2 = this.stackTop(5); this.stack.splice(this.stack.length - 6, 2); this.stack.push(v1); this.stack.push(v2); break; case OP_2SWAP: // (x1 x2 x3 x4 -- x3 x4 x1 x2) this.stackSwap(4, 2); this.stackSwap(3, 1); break; case OP_IFDUP: // (x - 0 | x x) var value = this.stackTop(); if (castBool(value)) { this.stack.push(value); } break; case OP_DEPTH: // -- stacksize var value = bignum(this.stack.length); this.stack.push(bigintToBuffer(value)); break; case OP_DROP: // (x -- ) this.stackPop(); break; case OP_DUP: // (x -- x x) this.stack.push(this.stackTop()); break; case OP_NIP: // (x1 x2 -- x2) if (this.stack.length < 2) { throw new Error("OP_NIP insufficient stack size"); } this.stack.splice(this.stack.length - 2, 1); break; case OP_OVER: // (x1 x2 -- x1 x2 x1) this.stack.push(this.stackTop(2)); break; case OP_PICK: case OP_ROLL: // (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn) // (xn ... x2 x1 x0 n - ... x2 x1 x0 xn) var n = castInt(this.stackPop()); if (n < 0 || n >= this.stack.length) { throw new Error("OP_PICK/OP_ROLL insufficient stack size"); } var value = this.stackTop(n + 1); if (opcode === OP_ROLL) { this.stack.splice(this.stack.length - n - 1, 1); } this.stack.push(value); break; case OP_ROT: // (x1 x2 x3 -- x2 x3 x1) // x2 x1 x3 after first swap // x2 x3 x1 after second swap this.stackSwap(3, 2); this.stackSwap(2, 1); break; case OP_SWAP: // (x1 x2 -- x2 x1) this.stackSwap(2, 1); break; case OP_TUCK: // (x1 x2 -- x2 x1 x2) if (this.stack.length < 2) { throw new Error("OP_TUCK insufficient stack size"); } this.stack.splice(this.stack.length - 2, 0, this.stackTop()); break; case OP_CAT: // (x1 x2 -- out) var v1 = this.stackTop(2); var v2 = this.stackTop(1); this.stackPop(); this.stackPop(); this.stack.push(Buffer.concat([v1, v2])); break; case OP_SUBSTR: // (in begin size -- out) var buf = this.stackTop(3); var start = castInt(this.stackTop(2)); var len = castInt(this.stackTop(1)); if (start < 0 || len < 0) { throw new Error("OP_SUBSTR start < 0 or len < 0"); } if ((start + len) >= buf.length) { throw new Error("OP_SUBSTR range out of bounds"); } this.stackPop(); this.stackPop(); this.stack[this.stack.length - 1] = buf.slice(start, start + len); break; case OP_LEFT: case OP_RIGHT: // (in size -- out) var buf = this.stackTop(2); var size = castInt(this.stackTop(1)); if (size < 0) { throw new Error("OP_LEFT/OP_RIGHT size < 0"); } if (size > buf.length) { size = buf.length; } this.stackPop(); if (opcode === OP_LEFT) { this.stack[this.stack.length - 1] = buf.slice(0, size); } else { this.stack[this.stack.length - 1] = buf.slice(buf.length - size); } break; case OP_SIZE: // (in -- in size) var value = bignum(this.stackTop().length); this.stack.push(bigintToBuffer(value)); break; case OP_INVERT: // (in - out) var buf = this.stackTop(); for (var i = 0, l = buf.length; i < l; i++) { buf[i] = ~buf[i]; } break; case OP_AND: case OP_OR: case OP_XOR: // (x1 x2 - out) var v1 = this.stackTop(2); var v2 = this.stackTop(1); this.stackPop(); this.stackPop(); var out = new Buffer(Math.max(v1.length, v2.length)); if (opcode === OP_AND) { for (var i = 0, l = out.length; i < l; i++) { out[i] = v1[i] & v2[i]; } } else if (opcode === OP_OR) { for (var i = 0, l = out.length; i < l; i++) { out[i] = v1[i] | v2[i]; } } else if (opcode === OP_XOR) { for (var i = 0, l = out.length; i < l; i++) { out[i] = v1[i] ^ v2[i]; } } this.stack.push(out); break; case OP_EQUAL: case OP_EQUALVERIFY: //case OP_NOTEQUAL: // use OP_NUMNOTEQUAL // (x1 x2 - bool) var v1 = this.stackTop(2); var v2 = this.stackTop(1); console.log(v1); console.log(v2); var value = buffertools.compare(v1, v2) === 0; // OP_NOTEQUAL is disabled because it would be too easy to say // something like n != 1 and have some wiseguy pass in 1 with extra // zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001) //if (opcode == OP_NOTEQUAL) // fEqual = !fEqual; this.stackPop(); this.stackPop(); this.stack.push(new Buffer([value ? 1 : 0])); if (opcode === OP_EQUALVERIFY) { if (value) { this.stackPop(); } else { throw new Error("OP_EQUALVERIFY negative"); } } break; case OP_1ADD: case OP_1SUB: case OP_2MUL: case OP_2DIV: case OP_NEGATE: case OP_ABS: case OP_NOT: case OP_0NOTEQUAL: // (in -- out) var num = castBigint(this.stackTop()); switch (opcode) { case OP_1ADD: num = num.add(bignum(1)); break; case OP_1SUB: num = num.sub(bignum(1)); break; case OP_2MUL: num = num.mul(bignum(2)); break; case OP_2DIV: num = num.div(bignum(2)); break; case OP_NEGATE: num = num.neg(); break; case OP_ABS: num = num.abs(); break; case OP_NOT: num = bignum(num.cmp(0) == 0 ? 1 : 0); break; case OP_0NOTEQUAL: num = bignum(num.cmp(0) == 0 ? 0 : 1); break; } this.stack[this.stack.length - 1] = bigintToBuffer(num); break; case OP_ADD: case OP_SUB: case OP_MUL: case OP_DIV: case OP_MOD: case OP_LSHIFT: case OP_RSHIFT: case OP_BOOLAND: case OP_BOOLOR: case OP_NUMEQUAL: case OP_NUMEQUALVERIFY: case OP_NUMNOTEQUAL: case OP_LESSTHAN: case OP_GREATERTHAN: case OP_LESSTHANOREQUAL: case OP_GREATERTHANOREQUAL: case OP_MIN: case OP_MAX: // (x1 x2 -- out) var v1 = castBigint(this.stackTop(2)); var v2 = castBigint(this.stackTop(1)); var num; switch (opcode) { case OP_ADD: num = v1.add(v2); break; case OP_SUB: num = v1.sub(v2); break; case OP_MUL: num = v1.mul(v2); break; case OP_DIV: num = v1.div(v2); break; case OP_MOD: num = v1.mod(v2); break; case OP_LSHIFT: if (v2.cmp(0) < 0 || v2.cmp(2048) > 0) { throw new Error("OP_LSHIFT parameter out of bounds"); } num = v1.shiftLeft(v2); break; case OP_RSHIFT: if (v2.cmp(0) < 0 || v2.cmp(2048) > 0) { throw new Error("OP_RSHIFT parameter out of bounds"); } num = v1.shiftRight(v2); break; case OP_BOOLAND: num = bignum((v1.cmp(0) != 0 && v2.cmp(0) != 0) ? 1 : 0); break; case OP_BOOLOR: num = bignum((v1.cmp(0) != 0 || v2.cmp(0) != 0) ? 1 : 0); break; case OP_NUMEQUAL: case OP_NUMEQUALVERIFY: num = bignum(v1.cmp(v2) == 0 ? 1 : 0); break; case OP_NUMNOTEQUAL: ; num = bignum(v1.cmp(v2) != 0 ? 1 : 0); break; case OP_LESSTHAN: num = bignum(v1.lt(v2) ? 1 : 0); break; case OP_GREATERTHAN: num = bignum(v1.gt(v2) ? 1 : 0); break; case OP_LESSTHANOREQUAL: num = bignum(v1.gt(v2) ? 0 : 1); break; case OP_GREATERTHANOREQUAL: num = bignum(v1.lt(v2) ? 0 : 1); break; case OP_MIN: num = (v1.lt(v2) ? v1 : v2); break; case OP_MAX: num = (v1.gt(v2) ? v1 : v2); break; } this.stackPop(); this.stackPop(); this.stack.push(bigintToBuffer(num)); if (opcode === OP_NUMEQUALVERIFY) { if (castBool(this.stackTop())) { this.stackPop(); } else { throw new Error("OP_NUMEQUALVERIFY negative"); } } break; case OP_WITHIN: // (x min max -- out) var v1 = castBigint(this.stackTop(3)); var v2 = castBigint(this.stackTop(2)); var v3 = castBigint(this.stackTop(1)); this.stackPop(); this.stackPop(); this.stackPop(); var value = v1.cmp(v2) >= 0 && v1.cmp(v3) < 0; this.stack.push(bigintToBuffer(value ? 1 : 0)); break; case OP_RIPEMD160: case OP_SHA1: case OP_SHA256: case OP_HASH160: case OP_HASH256: // (in -- hash) var value = this.stackPop(); var hash; if (opcode === OP_RIPEMD160) { hash = Util.ripe160(value); } else if (opcode === OP_SHA1) { hash = Util.sha1(value); } else if (opcode === OP_SHA256) { hash = Util.sha256(value); } else if (opcode === OP_HASH160) { hash = Util.sha256ripe160(value); } else if (opcode === OP_HASH256) { hash = Util.twoSha256(value); } this.stack.push(hash); break; case OP_CODESEPARATOR: // Hash starts after the code separator hashStart = pc; break; case OP_CHECKSIG: case OP_CHECKSIGVERIFY: // (sig pubkey -- bool) var sig = this.stackTop(2); var pubkey = this.stackTop(1); // Get the part of this script since the last OP_CODESEPARATOR var scriptChunks = script.chunks.slice(hashStart); // Convert to binary var scriptCode = Script.fromChunks(scriptChunks); // Remove signature if present (a signature can't sign itself) scriptCode.findAndDelete(sig); // Verify signature checkSig(sig, pubkey, scriptCode, tx, inIndex, hashType, function(e, result) { try { var success; if (e) { // We intentionally ignore errors during signature verification and // treat these cases as an invalid signature. success = false; } else { success = result; } // Update stack this.stackPop(); this.stackPop(); this.stack.push(new Buffer([success ? 1 : 0])); if (opcode === OP_CHECKSIGVERIFY) { if (success) { this.stackPop(); } else { throw new Error("OP_CHECKSIGVERIFY negative"); } } // Run next step executeStep.call(this, cb); } catch (e) { cb(e); } }.bind(this)); // Note that for asynchronous opcodes we have to return here to prevent // the next opcode from being executed. return; case OP_CHECKMULTISIG: case OP_CHECKMULTISIGVERIFY: // ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool) var keysCount = castInt(this.stackPop()); if (keysCount < 0 || keysCount > 20) { throw new Error("OP_CHECKMULTISIG keysCount out of bounds"); } opCount += keysCount; if (opCount > 201) { throw new Error("Opcode limit exceeded (>200)"); } var keys = []; for (var i = 0, l = keysCount; i < l; i++) { keys.push(this.stackPop()); } var sigsCount = castInt(this.stackPop()); if (sigsCount < 0 || sigsCount > keysCount) { throw new Error("OP_CHECKMULTISIG sigsCount out of bounds"); } var sigs = []; for (var i = 0, l = sigsCount; i < l; i++) { sigs.push(this.stackPop()); } // The original client has a bug where it pops an extra element off the // stack. It can't be fixed without causing a chain split and we need to // imitate this behavior as well. this.stackPop(); // Get the part of this script since the last OP_CODESEPARATOR var scriptChunks = script.chunks.slice(hashStart); // Convert to binary var scriptCode = Script.fromChunks(scriptChunks); // Drop the signatures, since a signature can't sign itself sigs.forEach(function(sig) { scriptCode.findAndDelete(sig); }); var success = true, isig = 0, ikey = 0; checkMultiSigStep.call(this); function checkMultiSigStep() { try { if (success && sigsCount > 0) { var sig = sigs[isig]; var key = keys[ikey]; checkSig(sig, key, scriptCode, tx, inIndex, hashType, function(e, result) { try { if (!e && result) { isig++; sigsCount--; } else { ikey++; keysCount--; // If there are more signatures than keys left, then too many // signatures have failed if (sigsCount > keysCount) { success = false; } } checkMultiSigStep.call(this); } catch (e) { cb(e); } }.bind(this)); } else { this.stack.push(new Buffer([success ? 1 : 0])); if (opcode === OP_CHECKMULTISIGVERIFY) { if (success) { this.stackPop(); } else { throw new Error("OP_CHECKMULTISIGVERIFY negative"); } } // Run next step executeStep.call(this, cb); } } catch (e) { cb(e); } }; // Note that for asynchronous opcodes we have to return here to prevent // the next opcode from being executed. return; default: console.log('opcode '+opcode); throw new Error("Unknown opcode encountered"); } // Size limits if ((this.stack.length + altStack.length) > 1000) { throw new Error("Maximum stack size exceeded"); } // Run next step if (pc % 100) { // V8 allows for much deeper stacks than Bitcoin's scripting language, // but just to be safe, we'll reset the stack every 100 steps process.nextTick(executeStep.bind(this, cb)); } else { executeStep.call(this, cb); } } catch (e) { log.debug("Script aborted: " + (e.message ? e.message : e)); cb(e); } } }; ScriptInterpreter.prototype.evalTwo = function evalTwo(scriptSig, scriptPubkey, tx, n, hashType, callback) { var self = this; self.eval(scriptSig, tx, n, hashType, function(e) { if (e) { callback(e) return; } self.eval(scriptPubkey, tx, n, hashType, callback); }); }; /** * Get the top element of the stack. * * Using the offset parameter this function can also access lower elements * from the stack. */ ScriptInterpreter.prototype.stackTop = function stackTop(offset) { offset = +offset || 1; if (offset < 1) offset = 1; if (offset > this.stack.length) { throw new Error('ScriptInterpreter.stackTop(): Stack underrun'); } return this.stack[this.stack.length - offset]; }; ScriptInterpreter.prototype.stackBack = function stackBack() { return this.stack[-1]; }; /** * Pop the top element off the stack and return it. */ ScriptInterpreter.prototype.stackPop = function stackPop() { if (this.stack.length < 1) { throw new Error('ScriptInterpreter.stackTop(): Stack underrun'); } return this.stack.pop(); }; ScriptInterpreter.prototype.stackSwap = function stackSwap(a, b) { if (this.stack.length < a || this.stack.length < b) { throw new Error('ScriptInterpreter.stackTop(): Stack underrun'); } var s = this.stack, l = s.length; var tmp = s[l - a]; s[l - a] = s[l - b]; s[l - b] = tmp; }; /** * Returns a version of the stack with only primitive types. * * The return value is an array. Any single byte buffer is converted to an * integer. Any longer Buffer is converted to a hex string. */ ScriptInterpreter.prototype.getPrimitiveStack = function getPrimitiveStack() { return this.stack.map(function(entry) { if (entry.length > 2) { return buffertools.toHex(entry.slice(0)); } var num = castBigint(entry); if (num.cmp(-128) >= 0 && num.cmp(127) <= 0) { return num.toNumber(); } else { return buffertools.toHex(entry.slice(0)); } }); }; var castBool = ScriptInterpreter.castBool = function castBool(v) { for (var i = 0, l = v.length; i < l; i++) { if (v[i] != 0) { // Negative zero is still zero if (i == (l - 1) && v[i] == 0x80) { return false; } return true; } } return false; }; var castInt = ScriptInterpreter.castInt = function castInt(v) { return castBigint(v).toNumber(); }; var castBigint = ScriptInterpreter.castBigint = function castBigint(v) { if (!v.length) { return bignum(0); } // Arithmetic operands must be in range [-2^31...2^31] if (v.length > 4) { throw new Error("Bigint cast overflow (> 4 bytes)"); } var w = new Buffer(v.length); v.copy(w); w = buffertools.reverse(w); if (w[0] & 0x80) { w[0] &= 0x7f; return bignum.fromBuffer(w).neg(); } else { // Positive number return bignum.fromBuffer(w); } }; var bigintToBuffer = ScriptInterpreter.bigintToBuffer = function bigintToBuffer(v) { if ("number" === typeof v) { v = bignum(v); } var b, c; var cmp = v.cmp(0); if (cmp > 0) { b = v.toBuffer(); if (b[0] & 0x80) { c = new Buffer(b.length + 1); b.copy(c, 1); c[0] = 0; return buffertools.reverse(c); } else { return buffertools.reverse(b); } } else if (cmp == 0) { return new Buffer([]); } else { b = v.neg().toBuffer(); if (b[0] & 0x80) { c = new Buffer(b.length + 1); b.copy(c, 1); c[0] = 0x80; return buffertools.reverse(c); } else { b[0] |= 0x80; return buffertools.reverse(b); } } }; ScriptInterpreter.prototype.getResult = function getResult() { if (this.stack.length === 0) { throw new Error("Empty stack after script evaluation"); } return castBool(this.stack[this.stack.length - 1]); }; ScriptInterpreter.verify = function verify(scriptSig, scriptPubKey, txTo, n, hashType, callback) { if ("function" !== typeof callback) { throw new Error("ScriptInterpreter.verify() requires a callback"); } // Create execution environment var si = new ScriptInterpreter(); // Evaluate scripts si.evalTwo(scriptSig, scriptPubKey, txTo, n, hashType, function(err) { if (err) { callback(err); return; } // Cast result to bool try { var result = si.getResult(); } catch (err) { callback(err); return; } callback(null, result); }); return si; }; function verifyStep4(scriptSig, scriptPubKey, txTo, nIn, hashType, opts, callback, si, siCopy) { if (siCopy.stack.length == 0) { callback(null, false); return; } callback(null, castBool(siCopy.stackBack())); } function verifyStep3(scriptSig, scriptPubKey, txTo, nIn, hashType, opts, callback, si, siCopy) { if (si.stack.length == 0) { callback(null, false); return; } if (castBool(si.stackBack()) == false) { callback(null, false); return; } // if not P2SH, we're done if (!opts.verifyP2SH || !scriptPubKey.isP2SH()) { callback(null, true); return; } if (!scriptSig.isPushOnly()) { callback(null, false); return; } assert.notEqual(siCopy.length, 0); var subscript = new Script(siCopy.stackPop()); ok = true; siCopy.eval(subscript, txTo, nIn, hashType, function(err) { if (err) callback(err); else verifyStep4(scriptSig, scriptPubKey, txTo, nIn, hashType, opts, callback, si, siCopy); }); } function verifyStep2(scriptSig, scriptPubKey, txTo, nIn, hashType, opts, callback, si, siCopy) { if (opts.verifyP2SH) { si.stack.forEach(function(item) { siCopy.stack.push(item); }); } si.eval(scriptPubKey, txTo, nIn, hashType, function(err) { if (err) callback(err); else verifyStep3(scriptSig, scriptPubKey, txTo, nIn, hashType, opts, callback, si, siCopy); }); } ScriptInterpreter.verifyFull = function verifyFull(scriptSig, scriptPubKey, txTo, nIn, hashType, opts, callback) { var si = new ScriptInterpreter(); var siCopy = new ScriptInterpreter(); si.eval(scriptSig, txTo, nIn, hashType, function(err) { if (err) callback(err); else verifyStep2(scriptSig, scriptPubKey, txTo, nIn, hashType, opts, callback, si, siCopy); }); }; var checkSig = ScriptInterpreter.checkSig = function(sig, pubkey, scriptCode, tx, n, hashType, callback) { if (!sig.length) { callback(null, false); return; } if (hashType == 0) { hashType = sig[sig.length - 1]; } else if (hashType != sig[sig.length - 1]) { callback(null, false); return; } sig = sig.slice(0, sig.length - 1); try { // Signature verification requires a special hash procedure var hash = tx.hashForSignature(scriptCode, n, hashType); // Verify signature var key = new Util.BitcoinKey(); key.public = pubkey; key.verifySignature(hash, sig, callback); } catch (err) { callback(null, false); } }; return ScriptInterpreter; }; module.defineClass(spec);