You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

191 lines
6.3 KiB

/* global describe, it */
var assert = require('assert')
var async = require('async')
var bigi = require('bigi')
var bitcoin = require('../../')
var blockchain = new (require('cb-helloblock'))('bitcoin')
var crypto = require('crypto')
describe('bitcoinjs-lib (crypto)', function () {
it('can generate a single-key stealth address', function () {
var receiver = bitcoin.ECPair.fromWIF('5KYZdUEo39z3FPrtuX2QbbwGnNP5zTd7yyr2SC1j299sBCnWjss')
// XXX: ephemeral, must be random (and secret to sender) to preserve privacy
var sender = bitcoin.ECPair.fromWIF('Kxr9tQED9H44gCmp6HAdmemAzU3n84H3dGkuWTKvE23JgHMW8gct')
var G = bitcoin.ECPair.curve.G
var d = receiver.d // secret (receiver only)
var Q = receiver.Q // shared
var e = sender.d // secret (sender only)
var P = sender.Q // shared
// derived shared secret
var eQ = Q.multiply(e) // sender
var dP = P.multiply(d) // receiver
assert.deepEqual(eQ.getEncoded(), dP.getEncoded())
var c = bigi.fromBuffer(bitcoin.crypto.sha256(eQ.getEncoded()))
var cG = G.multiply(c)
// derived public key
var QprimeS = Q.add(cG)
var QprimeR = G.multiply(d.add(c))
assert.deepEqual(QprimeR.getEncoded(), QprimeS.getEncoded())
// derived shared-secret address
var address = new bitcoin.ECPair(null, QprimeS).getAddress().toString()
assert.equal(address, '1EwCNJNZM5q58YPPTnjR1H5BvYRNeyZi47')
})
// TODO
it.skip('can generate a dual-key stealth address', function () {})
it("can recover a parent private key from the parent's public key and a derived non-hardened child private key", function () {
function recoverParent (master, child) {
assert(!master.keyPair.d, 'You already have the parent private key')
assert(child.keyPair.d, 'Missing child private key')
var curve = bitcoin.ECPair.curve
var QP = master.keyPair.Q
var serQP = master.keyPair.getPublicKeyBuffer()
var d1 = child.keyPair.d
var d2
var indexBuffer = new Buffer(4)
// search index space until we find it
for (var i = 0; i < bitcoin.HDNode.HIGHEST_BIT; ++i) {
indexBuffer.writeUInt32BE(i, 0)
// calculate I
var data = Buffer.concat([serQP, indexBuffer])
var I = crypto.createHmac('sha512', master.chainCode).update(data).digest()
var IL = I.slice(0, 32)
var pIL = bigi.fromBuffer(IL)
// See hdnode.js:273 to understand
d2 = d1.subtract(pIL).mod(curve.n)
var Qp = new bitcoin.ECPair(d2).Q
if (Qp.equals(QP)) break
}
var node = new bitcoin.HDNode(new bitcoin.ECPair(d2), master.chainCode, master.network)
node.depth = master.depth
node.index = master.index
node.masterFingerprint = master.masterFingerprint
return node
}
var seed = crypto.randomBytes(32)
var master = bitcoin.HDNode.fromSeedBuffer(seed)
var child = master.derive(6) // m/6
// now for the recovery
var neuteredMaster = master.neutered()
var recovered = recoverParent(neuteredMaster, child)
assert.equal(recovered.toBase58(), master.toBase58())
})
it('can recover a private key from duplicate R values', function () {
var inputs = [
{
txId: 'f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50',
vout: 0
},
{
txId: 'f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50',
vout: 1
}
]
var txIds = inputs.map(function (x) {
return x.txId
})
// first retrieve the relevant transactions
blockchain.transactions.get(txIds, function (err, results) {
assert.ifError(err)
var transactions = {}
results.forEach(function (tx) {
transactions[tx.txId] = bitcoin.Transaction.fromHex(tx.txHex)
})
var tasks = []
// now we need to collect/transform a bit of data from the selected inputs
inputs.forEach(function (input) {
var transaction = transactions[input.txId]
var script = transaction.ins[input.vout].script
assert(bitcoin.scripts.isPubKeyHashInput(script), 'Expected pubKeyHash script')
var prevOutTxId = bitcoin.bufferutils.reverse(transaction.ins[input.vout].hash).toString('hex')
var prevVout = transaction.ins[input.vout].index
tasks.push(function (callback) {
blockchain.transactions.get(prevOutTxId, function (err, result) {
if (err) return callback(err)
var prevOut = bitcoin.Transaction.fromHex(result.txHex)
var prevOutScript = prevOut.outs[prevVout].script
var scriptSignature = bitcoin.ECSignature.parseScriptSignature(script.chunks[0])
var publicKey = bitcoin.ECPair.fromPublicKeyBuffer(script.chunks[1])
var m = transaction.hashForSignature(input.vout, prevOutScript, scriptSignature.hashType)
assert(publicKey.verify(m, scriptSignature.signature), 'Invalid m')
// store the required information
input.signature = scriptSignature.signature
input.z = bigi.fromBuffer(m)
return callback()
})
})
})
// finally, run the tasks, then on to the math
async.parallel(tasks, function (err) {
if (err)
throw err
var n = bitcoin.ECPair.curve.n
for (var i = 0; i < inputs.length; ++i) {
for (var j = i + 1; j < inputs.length; ++j) {
var inputA = inputs[i]
var inputB = inputs[j]
// enforce matching r values
assert.equal(inputA.signature.r.toString(), inputB.signature.r.toString())
var r = inputA.signature.r
var rInv = r.modInverse(n)
var s1 = inputA.signature.s
var s2 = inputB.signature.s
var z1 = inputA.z
var z2 = inputB.z
var zz = z1.subtract(z2).mod(n)
var ss = s1.subtract(s2).mod(n)
// k = (z1 - z2) / (s1 - s2)
// d1 = (s1 * k - z1) / r
// d2 = (s2 * k - z2) / r
var k = zz.multiply(ss.modInverse(n)).mod(n)
var d1 = ((s1.multiply(k).mod(n)).subtract(z1).mod(n)).multiply(rInv).mod(n)
var d2 = ((s2.multiply(k).mod(n)).subtract(z2).mod(n)).multiply(rInv).mod(n)
// enforce matching private keys
assert.equal(d1.toString(), d2.toString())
}
}
})
})
})
})