You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

275 lines
7.4 KiB

var assert = require('assert')
var base58check = require('bs58check')
var crypto = require('./crypto')
var networks = require('./networks')
var BigInteger = require('bigi')
var ECKey = require('./eckey')
var ECPubKey = require('./ecpubkey')
var ecurve = require('ecurve')
var curve = ecurve.getCurveByName('secp256k1')
function findBIP32ParamsByVersion(version) {
for (var name in networks) {
var network = networks[name]
for (var type in network.bip32) {
if (version != network.bip32[type]) continue
return {
isPrivate: (type === 'private'),
network: network
}
}
}
assert(false, 'Could not find version ' + version.toString(16))
}
function HDNode(K, chainCode, network) {
network = network || networks.bitcoin
assert(Buffer.isBuffer(chainCode), 'Expected Buffer, got ' + chainCode)
assert(network.bip32, 'Unknown BIP32 constants for network')
this.chainCode = chainCode
this.depth = 0
this.index = 0
this.network = network
if (K instanceof BigInteger) {
this.privKey = new ECKey(K, true)
this.pubKey = this.privKey.pub
} else {
this.pubKey = new ECPubKey(K, true)
}
}
HDNode.MASTER_SECRET = new Buffer('Bitcoin seed')
HDNode.HIGHEST_BIT = 0x80000000
HDNode.LENGTH = 78
HDNode.fromSeedBuffer = function(seed, network) {
assert(Buffer.isBuffer(seed), 'Expected Buffer, got' + seed)
assert(seed.length >= 16, 'Seed should be atleast 128 bits')
assert(seed.length <= 64, 'Seed should be atmost 512 bits')
var I = crypto.HmacSHA512(seed, HDNode.MASTER_SECRET)
var IL = I.slice(0, 32)
var IR = I.slice(32)
// In case IL is 0 or >= n, the master key is invalid
// This is handled by `new ECKey` in the HDNode constructor
var pIL = BigInteger.fromBuffer(IL)
return new HDNode(pIL, IR, network)
}
HDNode.fromSeedHex = function(hex, network) {
return HDNode.fromSeedBuffer(new Buffer(hex, 'hex'), network)
}
HDNode.fromBase58 = function(string) {
return HDNode.fromBuffer(base58check.decode(string))
}
HDNode.fromBuffer = function(buffer) {
assert.strictEqual(buffer.length, HDNode.LENGTH, 'Invalid buffer length')
// 4 byte: version bytes
var version = buffer.readUInt32BE(0)
var params = findBIP32ParamsByVersion(version)
// 1 byte: depth: 0x00 for master nodes, 0x01 for level-1 descendants, ...
var depth = buffer.readUInt8(4)
// 4 bytes: the fingerprint of the parent's key (0x00000000 if master key)
var parentFingerprint = buffer.readUInt32BE(5)
if (depth === 0) {
assert.strictEqual(parentFingerprint, 0x00000000, 'Invalid parent fingerprint')
}
// 4 bytes: child number. This is the number i in xi = xpar/i, with xi the key being serialized.
// This is encoded in MSB order. (0x00000000 if master key)
var index = buffer.readUInt32BE(9)
assert(depth > 0 || index === 0, 'Invalid index')
// 32 bytes: the chain code
var chainCode = buffer.slice(13, 45)
var hd
// 33 bytes: private key data (0x00 + k)
if (params.isPrivate) {
assert.strictEqual(buffer.readUInt8(45), 0x00, 'Invalid private key')
var data = buffer.slice(46, 78)
var d = BigInteger.fromBuffer(data)
hd = new HDNode(d, chainCode, params.network)
// 33 bytes: public key data (0x02 + X or 0x03 + X)
} else {
var data = buffer.slice(45, 78)
var Q = ecurve.Point.decodeFrom(curve, data)
assert.equal(Q.compressed, true, 'Invalid public key')
// Verify that the X coordinate in the public point corresponds to a point on the curve.
// If not, the extended public key is invalid.
curve.validate(Q)
hd = new HDNode(Q, chainCode, params.network)
}
hd.depth = depth
hd.index = index
hd.parentFingerprint = parentFingerprint
return hd
}
HDNode.fromHex = function(hex) {
return HDNode.fromBuffer(new Buffer(hex, 'hex'))
}
HDNode.prototype.getIdentifier = function() {
return crypto.hash160(this.pubKey.toBuffer())
}
HDNode.prototype.getFingerprint = function() {
return this.getIdentifier().slice(0, 4)
}
HDNode.prototype.getAddress = function() {
return this.pubKey.getAddress(this.network)
}
HDNode.prototype.toBase58 = function(isPrivate) {
return base58check.encode(this.toBuffer(isPrivate))
}
HDNode.prototype.toBuffer = function(isPrivate) {
if (isPrivate == undefined) isPrivate = !!this.privKey
// Version
var version = isPrivate ? this.network.bip32.private : this.network.bip32.public
var buffer = new Buffer(HDNode.LENGTH)
// 4 bytes: version bytes
buffer.writeUInt32BE(version, 0)
// Depth
// 1 byte: depth: 0x00 for master nodes, 0x01 for level-1 descendants, ....
buffer.writeUInt8(this.depth, 4)
// 4 bytes: the fingerprint of the parent's key (0x00000000 if master key)
var fingerprint = (this.depth === 0) ? 0x00000000 : this.parentFingerprint
buffer.writeUInt32BE(fingerprint, 5)
// 4 bytes: child number. This is the number i in xi = xpar/i, with xi the key being serialized.
// This is encoded in Big endian. (0x00000000 if master key)
buffer.writeUInt32BE(this.index, 9)
// 32 bytes: the chain code
this.chainCode.copy(buffer, 13)
// 33 bytes: the public key or private key data
if (isPrivate) {
assert(this.privKey, 'Missing private key')
// 0x00 + k for private keys
buffer.writeUInt8(0, 45)
this.privKey.d.toBuffer(32).copy(buffer, 46)
} else {
// X9.62 encoding for public keys
this.pubKey.toBuffer().copy(buffer, 45)
}
return buffer
}
HDNode.prototype.toHex = function(isPrivate) {
return this.toBuffer(isPrivate).toString('hex')
}
// https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#child-key-derivation-ckd-functions
HDNode.prototype.derive = function(index) {
var isHardened = index >= HDNode.HIGHEST_BIT
var indexBuffer = new Buffer(4)
indexBuffer.writeUInt32BE(index, 0)
var data
// Hardened child
if (isHardened) {
assert(this.privKey, 'Could not derive hardened child key')
// data = 0x00 || ser256(kpar) || ser32(index)
data = Buffer.concat([
this.privKey.d.toBuffer(33),
indexBuffer
])
// Normal child
} else {
// data = serP(point(kpar)) || ser32(index)
// = serP(Kpar) || ser32(index)
data = Buffer.concat([
this.pubKey.toBuffer(),
indexBuffer
])
}
var I = crypto.HmacSHA512(data, this.chainCode)
var IL = I.slice(0, 32)
var IR = I.slice(32)
var pIL = BigInteger.fromBuffer(IL)
// In case parse256(IL) >= n, proceed with the next value for i
if (pIL.compareTo(curve.n) >= 0) {
return this.derive(index + 1)
}
// Private parent key -> private child key
var hd
if (this.privKey) {
// ki = parse256(IL) + kpar (mod n)
var ki = pIL.add(this.privKey.d).mod(curve.n)
// In case ki == 0, proceed with the next value for i
if (ki.signum() === 0) {
return this.derive(index + 1)
}
hd = new HDNode(ki, IR, this.network)
// Public parent key -> public child key
} else {
// Ki = point(parse256(IL)) + Kpar
// = G*IL + Kpar
var Ki = curve.G.multiply(pIL).add(this.pubKey.Q)
// In case Ki is the point at infinity, proceed with the next value for i
if (curve.isInfinity(Ki)) {
return this.derive(index + 1)
}
hd = new HDNode(Ki, IR, this.network)
}
hd.depth = this.depth + 1
hd.index = index
hd.parentFingerprint = this.getFingerprint().readUInt32BE(0)
return hd
}
HDNode.prototype.deriveHardened = function(index) {
// Only derives hardened private keys by default
return this.derive(index + HDNode.HIGHEST_BIT)
}
HDNode.prototype.toString = HDNode.prototype.toBase58
module.exports = HDNode