From 3bed73da65d252ea83ed27574aee7ef6ba886a38 Mon Sep 17 00:00:00 2001 From: Wei Lu Date: Sun, 2 Mar 2014 01:09:52 +0800 Subject: [PATCH] Remove pailier.js #33, @abrkn --- src/paillier.js | 118 ------------------------------------------------ 1 file changed, 118 deletions(-) delete mode 100644 src/paillier.js diff --git a/src/paillier.js b/src/paillier.js deleted file mode 100644 index 54881ba..0000000 --- a/src/paillier.js +++ /dev/null @@ -1,118 +0,0 @@ -/** - * Implement the Paillier cryptosystem in JavaScript. - * - * Paillier is useful for multiparty calculation. It is not currently part of any - * BitcoinJS-lib distribution, but it is included here for experimental use. - */ -Bitcoin.Paillier = (function () { - var rng = new SecureRandom(); - var TWO = BigInteger.valueOf(2); - - var Paillier = { - generate: function (bitLength) { - var p, q; - do { - p = new BigInteger(bitLength, 1, rng); - q = new BigInteger(bitLength, 1, rng); - } while (p.equals(q)); - - var n = p.multiply(q); - - // p - 1 - var p1 = p.subtract(BigInteger.ONE); - // q - 1 - var q1 = q.subtract(BigInteger.ONE); - - var nSq = n.multiply(n); - - // lambda - var l = p1.multiply(q1).divide(p1.gcd(q1)); - - var coprimeBitLength = n.bitLength() - Math.floor(Math.random()*10); - - var alpha = new BigInteger(coprimeBitLength, 1, rng); - var beta = new BigInteger(coprimeBitLength, 1, rng); - - var g = alpha.multiply(n).add(BigInteger.ONE) - .multiply(beta.modPow(n,nSq)).mod(nSq); - - // mu - var m = g.modPow(l,nSq).mod(nSq) - .subtract(BigInteger.ONE).divide(n).modInverse(n); - - return new Paillier.PrivateKey(n,g,l,m,nSq); - } - }; - - Paillier.PublicKey = function (n,g,nSq) { - this.n = n; - this.g = g; - this.nSq = nSq || n.multiply(n); - }; - - Paillier.PublicKey.prototype.encrypt = function (i, r) { - if (!r) { - var coprimeBitLength = this.n.bitLength() - Math.floor(Math.random()*10); - r = new BigInteger(coprimeBitLength, 1, rng); - } - return this.g.modPow(i,this.nSq).multiply(r.modPow(this.n,this.nSq)) - .mod(this.nSq); - }; - - Paillier.PublicKey.prototype.add = function (c, f) { - return c.multiply(this.encrypt(f)).mod(this.nSq); - }; - - Paillier.PublicKey.prototype.addCrypt = function (c, f) { - return c.multiply(f).mod(this.nSq); - }; - - Paillier.PublicKey.prototype.multiply = function (c, f) { - return c.modPow(f, this.nSq); - }; - - Paillier.PublicKey.prototype.rerandomize = function (c, r) { - if (!r) { - var coprimeBitLength = this.n.bitLength() - Math.floor(Math.random()*10); - r = new BigInteger(coprimeBitLength, 1, rng); - } - return c.multiply(r.modPow(this.n, this.nSq)).mod(this.nSq); - }; - - Paillier.PrivateKey = function (n,g,l,m,nSq) { - this.l = l; - this.m = m; - this.n = n; - this.nSq = nSq || n.multiply(n); - this.pub = new Paillier.PublicKey(n,g,this.nSq); - }; - - Paillier.PrivateKey.prototype.decrypt = function (c) { - return c.modPow(this.l, this.nSq).subtract(BigInteger.ONE) - .divide(this.n).multiply(this.m).mod(this.n); - }; - - Paillier.PrivateKey.prototype.decryptR = function (c, i) { - if (!i) { - i = this.decrypt(c); - } - var rn = c.multiply(this.pub.g.modPow(i, this.nSq).modInverse(this.nSq)) - .mod(this.nSq); - var a = this.l.modInverse(this.n).multiply(this.n.subtract(BigInteger.ONE)); - var e = a.multiply(this.l).add(BigInteger.ONE).divide(this.n); - return rn.modPow(e, this.n); - }; - - function createProxyMethod(name) { - return function () { - return this.pub[name].apply(this.pub, - Array.prototype.slice.apply(arguments)); - }; - }; - var a = ["add", "addCrypt", "multiply", "rerandomize", "encrypt"]; - for (var i = 0, l = a.length; i < l; i++) { - Paillier.PrivateKey.prototype[a[i]] = createProxyMethod(a[i]); - } - - return Paillier; -})();