|
|
@ -6,290 +6,294 @@ var assert = require('assert') |
|
|
|
var BigInteger = require('bigi') |
|
|
|
|
|
|
|
// constants
|
|
|
|
var TWO = BigInteger.valueOf(2) |
|
|
|
var THREE = BigInteger.valueOf(3) |
|
|
|
|
|
|
|
function ECFieldElementFp(q,x) { |
|
|
|
this.x = x; |
|
|
|
// TODO if(x.compareTo(q) >= 0) error
|
|
|
|
this.q = q; |
|
|
|
this.x = x |
|
|
|
// TODO if (x.compareTo(q) >= 0) error
|
|
|
|
this.q = q |
|
|
|
} |
|
|
|
|
|
|
|
function feFpEquals(other) { |
|
|
|
if(other == this) return true; |
|
|
|
return (this.q.equals(other.q) && this.x.equals(other.x)); |
|
|
|
if (other == this) return true |
|
|
|
return (this.q.equals(other.q) && this.x.equals(other.x)) |
|
|
|
} |
|
|
|
|
|
|
|
function feFpToBigInteger() { |
|
|
|
return this.x; |
|
|
|
return this.x |
|
|
|
} |
|
|
|
|
|
|
|
function feFpNegate() { |
|
|
|
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q)); |
|
|
|
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q)) |
|
|
|
} |
|
|
|
|
|
|
|
function feFpAdd(b) { |
|
|
|
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q)); |
|
|
|
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q)) |
|
|
|
} |
|
|
|
|
|
|
|
function feFpSubtract(b) { |
|
|
|
return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q)); |
|
|
|
return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q)) |
|
|
|
} |
|
|
|
|
|
|
|
function feFpMultiply(b) { |
|
|
|
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q)); |
|
|
|
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q)) |
|
|
|
} |
|
|
|
|
|
|
|
function feFpSquare() { |
|
|
|
return new ECFieldElementFp(this.q, this.x.square().mod(this.q)); |
|
|
|
return new ECFieldElementFp(this.q, this.x.square().mod(this.q)) |
|
|
|
} |
|
|
|
|
|
|
|
function feFpDivide(b) { |
|
|
|
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)); |
|
|
|
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)) |
|
|
|
} |
|
|
|
|
|
|
|
ECFieldElementFp.prototype.equals = feFpEquals; |
|
|
|
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger; |
|
|
|
ECFieldElementFp.prototype.negate = feFpNegate; |
|
|
|
ECFieldElementFp.prototype.add = feFpAdd; |
|
|
|
ECFieldElementFp.prototype.subtract = feFpSubtract; |
|
|
|
ECFieldElementFp.prototype.multiply = feFpMultiply; |
|
|
|
ECFieldElementFp.prototype.square = feFpSquare; |
|
|
|
ECFieldElementFp.prototype.divide = feFpDivide; |
|
|
|
ECFieldElementFp.prototype.equals = feFpEquals |
|
|
|
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger |
|
|
|
ECFieldElementFp.prototype.negate = feFpNegate |
|
|
|
ECFieldElementFp.prototype.add = feFpAdd |
|
|
|
ECFieldElementFp.prototype.subtract = feFpSubtract |
|
|
|
ECFieldElementFp.prototype.multiply = feFpMultiply |
|
|
|
ECFieldElementFp.prototype.square = feFpSquare |
|
|
|
ECFieldElementFp.prototype.divide = feFpDivide |
|
|
|
|
|
|
|
// ----------------
|
|
|
|
// ECPointFp
|
|
|
|
|
|
|
|
// constructor
|
|
|
|
function ECPointFp(curve,x,y,z) { |
|
|
|
this.curve = curve; |
|
|
|
this.x = x; |
|
|
|
this.y = y; |
|
|
|
// Projective coordinates: either zinv == null or z * zinv == 1
|
|
|
|
// z and zinv are just BigIntegers, not fieldElements
|
|
|
|
if(z == null) { |
|
|
|
this.z = BigInteger.ONE; |
|
|
|
} |
|
|
|
else { |
|
|
|
this.z = z; |
|
|
|
} |
|
|
|
this.zinv = null; |
|
|
|
//TODO: compression flag
|
|
|
|
this.curve = curve |
|
|
|
this.x = x |
|
|
|
this.y = y |
|
|
|
|
|
|
|
// Projective coordinates: either zinv == null or z * zinv == 1
|
|
|
|
// z and zinv are just BigIntegers, not fieldElements
|
|
|
|
this.z = (z == undefined) ? BigInteger.ONE : z |
|
|
|
this.zinv = null |
|
|
|
|
|
|
|
//TODO: compression flag
|
|
|
|
} |
|
|
|
|
|
|
|
function pointFpGetX() { |
|
|
|
if(this.zinv == null) { |
|
|
|
this.zinv = this.z.modInverse(this.curve.q); |
|
|
|
} |
|
|
|
return this.curve.fromBigInteger(this.x.toBigInteger().multiply(this.zinv).mod(this.curve.q)); |
|
|
|
if (this.zinv === null) { |
|
|
|
this.zinv = this.z.modInverse(this.curve.q) |
|
|
|
} |
|
|
|
|
|
|
|
return this.curve.fromBigInteger(this.x.toBigInteger().multiply(this.zinv).mod(this.curve.q)) |
|
|
|
} |
|
|
|
|
|
|
|
function pointFpGetY() { |
|
|
|
if(this.zinv == null) { |
|
|
|
this.zinv = this.z.modInverse(this.curve.q); |
|
|
|
} |
|
|
|
return this.curve.fromBigInteger(this.y.toBigInteger().multiply(this.zinv).mod(this.curve.q)); |
|
|
|
if (this.zinv === null) { |
|
|
|
this.zinv = this.z.modInverse(this.curve.q) |
|
|
|
} |
|
|
|
|
|
|
|
return this.curve.fromBigInteger(this.y.toBigInteger().multiply(this.zinv).mod(this.curve.q)) |
|
|
|
} |
|
|
|
|
|
|
|
function pointFpEquals(other) { |
|
|
|
if(other == this) return true; |
|
|
|
if(this.isInfinity()) return other.isInfinity(); |
|
|
|
if(other.isInfinity()) return this.isInfinity(); |
|
|
|
var u, v; |
|
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
|
|
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q); |
|
|
|
if (u.signum() !== 0) return false; |
|
|
|
// v = X2 * Z1 - X1 * Z2
|
|
|
|
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q); |
|
|
|
return v.signum() === 0; |
|
|
|
if (other == this) return true |
|
|
|
if (this.isInfinity()) return other.isInfinity() |
|
|
|
if (other.isInfinity()) return this.isInfinity() |
|
|
|
|
|
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
|
|
var u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q) |
|
|
|
|
|
|
|
if (u.signum() !== 0) return false |
|
|
|
|
|
|
|
// v = X2 * Z1 - X1 * Z2
|
|
|
|
var v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q) |
|
|
|
|
|
|
|
return v.signum() === 0 |
|
|
|
} |
|
|
|
|
|
|
|
function pointFpIsInfinity() { |
|
|
|
if ((this.x == null) && (this.y == null)) return true; |
|
|
|
return this.z.signum() === 0 && this.y.toBigInteger().signum() !== 0; |
|
|
|
if ((this.x === null) && (this.y === null)) return true |
|
|
|
return this.z.signum() === 0 && this.y.toBigInteger().signum() !== 0 |
|
|
|
} |
|
|
|
|
|
|
|
function pointFpNegate() { |
|
|
|
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z); |
|
|
|
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z) |
|
|
|
} |
|
|
|
|
|
|
|
function pointFpAdd(b) { |
|
|
|
if(this.isInfinity()) return b; |
|
|
|
if(b.isInfinity()) return this; |
|
|
|
|
|
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
|
|
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q); |
|
|
|
// v = X2 * Z1 - X1 * Z2
|
|
|
|
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q); |
|
|
|
|
|
|
|
if(v.signum() === 0) { |
|
|
|
if(u.signum() === 0) { |
|
|
|
return this.twice(); // this == b, so double
|
|
|
|
} |
|
|
|
return this.curve.getInfinity(); // this = -b, so infinity
|
|
|
|
} |
|
|
|
if (this.isInfinity()) return b |
|
|
|
if (b.isInfinity()) return this |
|
|
|
|
|
|
|
var x1 = this.x.toBigInteger() |
|
|
|
var y1 = this.y.toBigInteger() |
|
|
|
var x2 = b.x.toBigInteger() |
|
|
|
var y2 = b.y.toBigInteger() |
|
|
|
|
|
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
|
|
var u = y2.multiply(this.z).subtract(y1.multiply(b.z)).mod(this.curve.q) |
|
|
|
// v = X2 * Z1 - X1 * Z2
|
|
|
|
var v = x2.multiply(this.z).subtract(x1.multiply(b.z)).mod(this.curve.q) |
|
|
|
|
|
|
|
if (v.signum() === 0) { |
|
|
|
if (u.signum() === 0) { |
|
|
|
return this.twice() // this == b, so double
|
|
|
|
} |
|
|
|
|
|
|
|
var x1 = this.x.toBigInteger(); |
|
|
|
var y1 = this.y.toBigInteger(); |
|
|
|
var x2 = b.x.toBigInteger(); |
|
|
|
var y2 = b.y.toBigInteger(); |
|
|
|
return this.curve.getInfinity() // this = -b, so infinity
|
|
|
|
} |
|
|
|
|
|
|
|
var v2 = v.square(); |
|
|
|
var v3 = v2.multiply(v); |
|
|
|
var x1v2 = x1.multiply(v2); |
|
|
|
var zu2 = u.square().multiply(this.z); |
|
|
|
var v2 = v.square() |
|
|
|
var v3 = v2.multiply(v) |
|
|
|
var x1v2 = x1.multiply(v2) |
|
|
|
var zu2 = u.square().multiply(this.z) |
|
|
|
|
|
|
|
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
|
|
|
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q); |
|
|
|
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
|
|
|
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q); |
|
|
|
// z3 = v^3 * z1 * z2
|
|
|
|
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q); |
|
|
|
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
|
|
|
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q) |
|
|
|
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
|
|
|
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q) |
|
|
|
// z3 = v^3 * z1 * z2
|
|
|
|
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q) |
|
|
|
|
|
|
|
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); |
|
|
|
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3) |
|
|
|
} |
|
|
|
|
|
|
|
function pointFpTwice() { |
|
|
|
if(this.isInfinity()) return this; |
|
|
|
if(this.y.toBigInteger().signum() === 0) return this.curve.getInfinity(); |
|
|
|
if (this.isInfinity()) return this |
|
|
|
if (this.y.toBigInteger().signum() === 0) return this.curve.getInfinity() |
|
|
|
|
|
|
|
var x1 = this.x.toBigInteger(); |
|
|
|
var y1 = this.y.toBigInteger(); |
|
|
|
var x1 = this.x.toBigInteger() |
|
|
|
var y1 = this.y.toBigInteger() |
|
|
|
|
|
|
|
var y1z1 = y1.multiply(this.z); |
|
|
|
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q); |
|
|
|
var a = this.curve.a.toBigInteger(); |
|
|
|
var y1z1 = y1.multiply(this.z) |
|
|
|
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q) |
|
|
|
var a = this.curve.a.toBigInteger() |
|
|
|
|
|
|
|
// w = 3 * x1^2 + a * z1^2
|
|
|
|
var w = x1.square().multiply(THREE); |
|
|
|
if(a.signum() !== 0) { |
|
|
|
w = w.add(this.z.square().multiply(a)); |
|
|
|
} |
|
|
|
w = w.mod(this.curve.q); |
|
|
|
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
|
|
|
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q); |
|
|
|
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
|
|
|
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.pow(3)).mod(this.curve.q); |
|
|
|
// z3 = 8 * (y1 * z1)^3
|
|
|
|
var z3 = y1z1.pow(3).shiftLeft(3).mod(this.curve.q); |
|
|
|
// w = 3 * x1^2 + a * z1^2
|
|
|
|
var w = x1.square().multiply(THREE) |
|
|
|
|
|
|
|
if (a.signum() !== 0) { |
|
|
|
w = w.add(this.z.square().multiply(a)) |
|
|
|
} |
|
|
|
|
|
|
|
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); |
|
|
|
w = w.mod(this.curve.q) |
|
|
|
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
|
|
|
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q) |
|
|
|
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
|
|
|
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.pow(3)).mod(this.curve.q) |
|
|
|
// z3 = 8 * (y1 * z1)^3
|
|
|
|
var z3 = y1z1.pow(3).shiftLeft(3).mod(this.curve.q) |
|
|
|
|
|
|
|
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3) |
|
|
|
} |
|
|
|
|
|
|
|
// Simple NAF (Non-Adjacent Form) multiplication algorithm
|
|
|
|
// TODO: modularize the multiplication algorithm
|
|
|
|
function pointFpMultiply(k) { |
|
|
|
if(this.isInfinity()) return this; |
|
|
|
if(k.signum() === 0) return this.curve.getInfinity() |
|
|
|
if (this.isInfinity()) return this |
|
|
|
if (k.signum() === 0) return this.curve.getInfinity() |
|
|
|
|
|
|
|
var e = k; |
|
|
|
var h = e.multiply(THREE) |
|
|
|
var e = k |
|
|
|
var h = e.multiply(THREE) |
|
|
|
|
|
|
|
var neg = this.negate(); |
|
|
|
var R = this; |
|
|
|
var neg = this.negate() |
|
|
|
var R = this |
|
|
|
|
|
|
|
var i; |
|
|
|
for(i = h.bitLength() - 2; i > 0; --i) { |
|
|
|
R = R.twice(); |
|
|
|
for (var i = h.bitLength() - 2; i > 0; --i) { |
|
|
|
R = R.twice() |
|
|
|
|
|
|
|
var hBit = h.testBit(i); |
|
|
|
var eBit = e.testBit(i); |
|
|
|
var hBit = h.testBit(i) |
|
|
|
var eBit = e.testBit(i) |
|
|
|
|
|
|
|
if (hBit != eBit) { |
|
|
|
R = R.add(hBit ? this : neg); |
|
|
|
} |
|
|
|
if (hBit != eBit) { |
|
|
|
R = R.add(hBit ? this : neg) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return R; |
|
|
|
return R |
|
|
|
} |
|
|
|
|
|
|
|
// Compute this*j + x*k (simultaneous multiplication)
|
|
|
|
function pointFpMultiplyTwo(j,x,k) { |
|
|
|
var i; |
|
|
|
if(j.bitLength() > k.bitLength()) |
|
|
|
i = j.bitLength() - 1; |
|
|
|
var i |
|
|
|
|
|
|
|
if (j.bitLength() > k.bitLength()) |
|
|
|
i = j.bitLength() - 1 |
|
|
|
else |
|
|
|
i = k.bitLength() - 1; |
|
|
|
|
|
|
|
var R = this.curve.getInfinity(); |
|
|
|
var both = this.add(x); |
|
|
|
while(i >= 0) { |
|
|
|
R = R.twice(); |
|
|
|
if(j.testBit(i)) { |
|
|
|
if(k.testBit(i)) { |
|
|
|
R = R.add(both); |
|
|
|
i = k.bitLength() - 1 |
|
|
|
|
|
|
|
var R = this.curve.getInfinity() |
|
|
|
var both = this.add(x) |
|
|
|
while (i >= 0) { |
|
|
|
R = R.twice() |
|
|
|
if (j.testBit(i)) { |
|
|
|
if (k.testBit(i)) { |
|
|
|
R = R.add(both) |
|
|
|
} |
|
|
|
else { |
|
|
|
R = R.add(this); |
|
|
|
R = R.add(this) |
|
|
|
} |
|
|
|
} |
|
|
|
else { |
|
|
|
if(k.testBit(i)) { |
|
|
|
R = R.add(x); |
|
|
|
if (k.testBit(i)) { |
|
|
|
R = R.add(x) |
|
|
|
} |
|
|
|
} |
|
|
|
--i; |
|
|
|
--i |
|
|
|
} |
|
|
|
|
|
|
|
return R; |
|
|
|
return R |
|
|
|
} |
|
|
|
|
|
|
|
ECPointFp.prototype.getX = pointFpGetX; |
|
|
|
ECPointFp.prototype.getY = pointFpGetY; |
|
|
|
ECPointFp.prototype.equals = pointFpEquals; |
|
|
|
ECPointFp.prototype.isInfinity = pointFpIsInfinity; |
|
|
|
ECPointFp.prototype.negate = pointFpNegate; |
|
|
|
ECPointFp.prototype.add = pointFpAdd; |
|
|
|
ECPointFp.prototype.twice = pointFpTwice; |
|
|
|
ECPointFp.prototype.multiply = pointFpMultiply; |
|
|
|
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo; |
|
|
|
ECPointFp.prototype.getX = pointFpGetX |
|
|
|
ECPointFp.prototype.getY = pointFpGetY |
|
|
|
ECPointFp.prototype.equals = pointFpEquals |
|
|
|
ECPointFp.prototype.isInfinity = pointFpIsInfinity |
|
|
|
ECPointFp.prototype.negate = pointFpNegate |
|
|
|
ECPointFp.prototype.add = pointFpAdd |
|
|
|
ECPointFp.prototype.twice = pointFpTwice |
|
|
|
ECPointFp.prototype.multiply = pointFpMultiply |
|
|
|
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo |
|
|
|
|
|
|
|
// ----------------
|
|
|
|
// ECCurveFp
|
|
|
|
|
|
|
|
// constructor
|
|
|
|
function ECCurveFp(q,a,b) { |
|
|
|
this.q = q; |
|
|
|
this.a = this.fromBigInteger(a); |
|
|
|
this.b = this.fromBigInteger(b); |
|
|
|
this.infinity = new ECPointFp(this, null, null); |
|
|
|
this.q = q |
|
|
|
this.a = this.fromBigInteger(a) |
|
|
|
this.b = this.fromBigInteger(b) |
|
|
|
this.infinity = new ECPointFp(this, null, null) |
|
|
|
} |
|
|
|
|
|
|
|
function curveFpGetQ() { |
|
|
|
return this.q; |
|
|
|
return this.q |
|
|
|
} |
|
|
|
|
|
|
|
function curveFpGetA() { |
|
|
|
return this.a; |
|
|
|
return this.a |
|
|
|
} |
|
|
|
|
|
|
|
function curveFpGetB() { |
|
|
|
return this.b; |
|
|
|
return this.b |
|
|
|
} |
|
|
|
|
|
|
|
function curveFpEquals(other) { |
|
|
|
if(other == this) return true; |
|
|
|
return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b)); |
|
|
|
if (other == this) return true |
|
|
|
return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b)) |
|
|
|
} |
|
|
|
|
|
|
|
function curveFpGetInfinity() { |
|
|
|
return this.infinity; |
|
|
|
return this.infinity |
|
|
|
} |
|
|
|
|
|
|
|
function curveFpFromBigInteger(x) { |
|
|
|
return new ECFieldElementFp(this.q, x); |
|
|
|
return new ECFieldElementFp(this.q, x) |
|
|
|
} |
|
|
|
|
|
|
|
ECCurveFp.prototype.getQ = curveFpGetQ; |
|
|
|
ECCurveFp.prototype.getA = curveFpGetA; |
|
|
|
ECCurveFp.prototype.getB = curveFpGetB; |
|
|
|
ECCurveFp.prototype.equals = curveFpEquals; |
|
|
|
ECCurveFp.prototype.getInfinity = curveFpGetInfinity; |
|
|
|
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger; |
|
|
|
ECCurveFp.prototype.getQ = curveFpGetQ |
|
|
|
ECCurveFp.prototype.getA = curveFpGetA |
|
|
|
ECCurveFp.prototype.getB = curveFpGetB |
|
|
|
ECCurveFp.prototype.equals = curveFpEquals |
|
|
|
ECCurveFp.prototype.getInfinity = curveFpGetInfinity |
|
|
|
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger |
|
|
|
|
|
|
|
ECFieldElementFp.prototype.getByteLength = function () { |
|
|
|
return Math.floor((this.toBigInteger().bitLength() + 7) / 8); |
|
|
|
}; |
|
|
|
return Math.floor((this.toBigInteger().bitLength() + 7) / 8) |
|
|
|
} |
|
|
|
|
|
|
|
ECPointFp.prototype.getEncoded = function(compressed) { |
|
|
|
var x = this.getX().toBigInteger() |
|
|
@ -357,20 +361,20 @@ ECPointFp.decodeFrom = function (curve, buffer) { |
|
|
|
} |
|
|
|
|
|
|
|
ECPointFp.prototype.isOnCurve = function () { |
|
|
|
var x = this.getX().toBigInteger(); |
|
|
|
var y = this.getY().toBigInteger(); |
|
|
|
var a = this.curve.getA().toBigInteger(); |
|
|
|
var b = this.curve.getB().toBigInteger(); |
|
|
|
var x = this.getX().toBigInteger() |
|
|
|
var y = this.getY().toBigInteger() |
|
|
|
var a = this.curve.getA().toBigInteger() |
|
|
|
var b = this.curve.getB().toBigInteger() |
|
|
|
var p = this.curve.getQ() |
|
|
|
var lhs = y.square().mod(p) |
|
|
|
var rhs = x.pow(3).add(a.multiply(x)).add(b).mod(p) |
|
|
|
return lhs.equals(rhs); |
|
|
|
}; |
|
|
|
return lhs.equals(rhs) |
|
|
|
} |
|
|
|
|
|
|
|
ECPointFp.prototype.toString = function () { |
|
|
|
return '('+this.getX().toBigInteger().toString()+','+ |
|
|
|
this.getY().toBigInteger().toString()+')'; |
|
|
|
}; |
|
|
|
this.getY().toBigInteger().toString()+')' |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Validate an elliptic curve point. |
|
|
@ -378,39 +382,38 @@ ECPointFp.prototype.toString = function () { |
|
|
|
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive |
|
|
|
*/ |
|
|
|
ECPointFp.prototype.validate = function () { |
|
|
|
var n = this.curve.getQ(); |
|
|
|
var n = this.curve.getQ() |
|
|
|
|
|
|
|
// Check Q != O
|
|
|
|
if (this.isInfinity()) { |
|
|
|
throw new Error("Point is at infinity."); |
|
|
|
throw new Error("Point is at infinity.") |
|
|
|
} |
|
|
|
|
|
|
|
// Check coordinate bounds
|
|
|
|
var x = this.getX().toBigInteger(); |
|
|
|
var y = this.getY().toBigInteger(); |
|
|
|
var x = this.getX().toBigInteger() |
|
|
|
var y = this.getY().toBigInteger() |
|
|
|
if (x.compareTo(BigInteger.ONE) < 0 || |
|
|
|
x.compareTo(n.subtract(BigInteger.ONE)) > 0) { |
|
|
|
throw new Error('x coordinate out of bounds'); |
|
|
|
throw new Error('x coordinate out of bounds') |
|
|
|
} |
|
|
|
if (y.compareTo(BigInteger.ONE) < 0 || |
|
|
|
y.compareTo(n.subtract(BigInteger.ONE)) > 0) { |
|
|
|
throw new Error('y coordinate out of bounds'); |
|
|
|
throw new Error('y coordinate out of bounds') |
|
|
|
} |
|
|
|
|
|
|
|
// Check y^2 = x^3 + ax + b (mod n)
|
|
|
|
if (!this.isOnCurve()) { |
|
|
|
throw new Error("Point is not on the curve."); |
|
|
|
throw new Error("Point is not on the curve.") |
|
|
|
} |
|
|
|
|
|
|
|
// Check nQ = 0 (Q is a scalar multiple of G)
|
|
|
|
if (this.multiply(n).isInfinity()) { |
|
|
|
// TODO: This check doesn't work - fix.
|
|
|
|
throw new Error("Point is not a scalar multiple of G."); |
|
|
|
throw new Error("Point is not a scalar multiple of G.") |
|
|
|
} |
|
|
|
|
|
|
|
return true; |
|
|
|
}; |
|
|
|
|
|
|
|
return true |
|
|
|
} |
|
|
|
|
|
|
|
module.exports = ECCurveFp; |
|
|
|
module.exports.ECPointFp = ECPointFp; |
|
|
|
module.exports = ECCurveFp |
|
|
|
module.exports.ECPointFp = ECPointFp |
|
|
|