Browse Source

README: link to external explanations

v4
Daniel Cousens 6 years ago
parent
commit
5fc673a8d6
  1. 7
      README.md
  2. 103
      test/integration/crypto.js

7
README.md

@ -55,14 +55,14 @@ Unfortunately, this isn't a silver bullet.
Often, Javascript itself is working against us by bypassing these counter-measures.
Problems in [`Buffer (UInt8Array)`](https://github.com/feross/buffer), for example, can trivially result in catastrophic fund loss without any warning.
It can do this through undermining your random number generation, [accidentally producing a duplicate `k` value](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/crypto.js#L14), sending Bitcoin to a malformed output script, or any of a million different ways.
It can do this through undermining your random number generation, [accidentally producing a duplicate `k` value](https://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html), sending Bitcoin to a malformed output script, or any of a million different ways.
Running tests in your target environment is important and a recommended step to verify continuously.
Finally, **adhere to best practice**.
We are not an authorative source of best practice, but, at the very least:
* [Don't re-use addresses](https://en.bitcoin.it/wiki/Address_reuse).
* Don't share BIP32 extended public keys ('xpubs'). [They are a liability](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/crypto.js#L68), and it only takes 1 misplaced private key (or a buggy implementation!) and you are vulnerable to **catastrophic fund loss**.
* Don't share BIP32 extended public keys ('xpubs'). [They are a liability](https://bitcoin.stackexchange.com/questions/56916/derivation-of-parent-private-key-from-non-hardened-child), and it only takes 1 misplaced private key (or a buggy implementation!) and you are vulnerable to **catastrophic fund loss**.
* [Don't use `Math.random`](https://security.stackexchange.com/questions/181580/why-is-math-random-not-designed-to-be-cryptographically-secure) - in any way - don't.
* Enforce that users always verify (manually) a freshly-decoded human-readable version of their intended transaction before broadcast.
* Don't *ask* users to generate mnemonics, or 'brain wallets', humans are terrible random number generators.
@ -140,11 +140,8 @@ Some examples interact (via HTTPS) with a 3rd Party Blockchain Provider (3PBP).
- [Create (and broadcast via 3PBP) a Transaction where Alice can redeem the output after the expiry (in the future)](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/cltv.js#L88)
- [Create (and broadcast via 3PBP) a Transaction where Alice and Bob can redeem the output at any time](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/cltv.js#L144)
- [Create (but fail to broadcast via 3PBP) a Transaction where Alice attempts to redeem before the expiry](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/cltv.js#L190)
- [Recover a private key from duplicate R values](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/crypto.js#L14)
- [Recover a BIP32 parent private key from the parent public key, and a derived, non-hardened child private key](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/crypto.js#L68)
- [Generate a single-key stealth address](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/stealth.js#L72)
- [Generate a single-key stealth address (randomly)](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/stealth.js#L91)
- [Recover parent recipient.d, if a derived private key is leaked (and nonce was revealed)](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/stealth.js#L107)
- [Generate a dual-key stealth address](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/stealth.js#L124)
- [Generate a dual-key stealth address (randomly)](https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/stealth.js#L147)

103
test/integration/crypto.js

@ -1,103 +0,0 @@
const { describe, it } = require('mocha')
const assert = require('assert')
const BN = require('bn.js')
const bitcoin = require('../../')
const bip32 = require('bip32')
const crypto = require('crypto')
const tinysecp = require('tiny-secp256k1')
describe('bitcoinjs-lib (crypto)', function () {
it('can recover a private key from duplicate R values', function () {
// https://blockchain.info/tx/f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50
const tx = bitcoin.Transaction.fromHex('01000000020b668015b32a6178d8524cfef6dc6fc0a4751915c2e9b2ed2d2eab02424341c8000000006a47304402205e00298dc5265b7a914974c9d0298aa0e69a0ca932cb52a360436d6a622e5cd7022024bf5f506968f5f23f1835574d5afe0e9021b4a5b65cf9742332d5e4acb68f41012103fd089f73735129f3d798a657aaaa4aa62a00fa15c76b61fc7f1b27ed1d0f35b8ffffffffa95fa69f11dc1cbb77ef64f25a95d4b12ebda57d19d843333819d95c9172ff89000000006b48304502205e00298dc5265b7a914974c9d0298aa0e69a0ca932cb52a360436d6a622e5cd7022100832176b59e8f50c56631acbc824bcba936c9476c559c42a4468be98975d07562012103fd089f73735129f3d798a657aaaa4aa62a00fa15c76b61fc7f1b27ed1d0f35b8ffffffff02b000eb04000000001976a91472956eed9a8ecb19ae7e3ebd7b06cae4668696a788ac303db000000000001976a9146c0bd55dd2592287cd9992ce3ba3fc1208fb76da88ac00000000')
tx.ins.forEach(function (input, vin) {
const { output: prevOutput, pubkey, signature } = bitcoin.payments.p2pkh({ input: input.script })
const scriptSignature = bitcoin.script.signature.decode(signature)
const m = tx.hashForSignature(vin, prevOutput, scriptSignature.hashType)
assert(bitcoin.ECPair.fromPublicKey(pubkey).verify(m, scriptSignature.signature), 'Invalid m')
// store the required information
input.signature = scriptSignature.signature
input.z = new BN(m)
})
const n = new BN('fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141', 16)
for (var i = 0; i < tx.ins.length; ++i) {
for (var j = i + 1; j < tx.ins.length; ++j) {
const inputA = tx.ins[i]
const inputB = tx.ins[j]
// enforce matching r values
const r = inputA.signature.slice(0, 32)
const rB = inputB.signature.slice(0, 32)
assert.strictEqual(r.toString('hex'), rB.toString('hex'))
const rInv = new BN(r).invm(n)
const s1 = new BN(inputA.signature.slice(32, 64))
const s2 = new BN(inputB.signature.slice(32, 64))
const z1 = inputA.z
const z2 = inputB.z
const zz = z1.sub(z2).mod(n)
const ss = s1.sub(s2).mod(n)
// k = (z1 - z2) / (s1 - s2)
// d1 = (s1 * k - z1) / r
// d2 = (s2 * k - z2) / r
const k = zz.mul(ss.invm(n)).mod(n)
const d1 = ((s1.mul(k).mod(n)).sub(z1).mod(n)).mul(rInv).mod(n)
const d2 = ((s2.mul(k).mod(n)).sub(z2).mod(n)).mul(rInv).mod(n)
// enforce matching private keys
assert.strictEqual(d1.toString(), d2.toString())
}
}
})
it('can recover a BIP32 parent private key from the parent public key, and a derived, non-hardened child private key', function () {
function recoverParent (master, child) {
assert(master.isNeutered(), 'You already have the parent private key')
assert(!child.isNeutered(), 'Missing child private key')
const serQP = master.publicKey
const d1 = child.privateKey
const data = Buffer.alloc(37)
serQP.copy(data, 0)
// search index space until we find it
let d2
for (var i = 0; i < 0x80000000; ++i) {
data.writeUInt32BE(i, 33)
// calculate I
const I = crypto.createHmac('sha512', master.chainCode).update(data).digest()
const IL = I.slice(0, 32)
// See bip32.js:273 to understand
d2 = tinysecp.privateSub(d1, IL)
const Qp = bip32.fromPrivateKey(d2, Buffer.alloc(32, 0)).publicKey
if (Qp.equals(serQP)) break
}
const node = bip32.fromPrivateKey(d2, master.chainCode, master.network)
node.depth = master.depth
node.index = master.index
node.masterFingerprint = master.masterFingerprint
return node
}
const seed = crypto.randomBytes(32)
const master = bip32.fromSeed(seed)
const child = master.derive(6) // m/6
// now for the recovery
const neuteredMaster = master.neutered()
const recovered = recoverParent(neuteredMaster, child)
assert.strictEqual(recovered.toBase58(), master.toBase58())
})
})
Loading…
Cancel
Save