Stefan Thomas
14 years ago
4 changed files with 534 additions and 0 deletions
@ -0,0 +1,50 @@ |
|||
p { |
|||
margin: 0.4em 0 0.2em; |
|||
} |
|||
|
|||
input[type=text] { |
|||
width: 500px; |
|||
} |
|||
|
|||
.alice, .bob { |
|||
margin: 1em; |
|||
width: 550px; |
|||
padding: 10px; |
|||
} |
|||
|
|||
.alice { |
|||
border: 2px solid grey; |
|||
border-left-width: 20px; |
|||
} |
|||
|
|||
.bob { |
|||
border: 2px solid grey; |
|||
border-right-width: 20px; |
|||
} |
|||
|
|||
.messageleft, .messageright { |
|||
margin: 1em; |
|||
background-color: grey; |
|||
height: 30px; |
|||
text-align: center; |
|||
color: #fff; |
|||
line-height: 30px; |
|||
width: 590px; |
|||
} |
|||
|
|||
.messageleft .arrow, .messageright .arrow { |
|||
border-top: 15px solid #fff; |
|||
border-bottom: 15px solid #fff; |
|||
width: 0; |
|||
height: 0; |
|||
} |
|||
|
|||
.messageright .arrow { |
|||
float: right; |
|||
border-left: 15px solid grey; |
|||
} |
|||
|
|||
.messageleft .arrow { |
|||
float: left; |
|||
border-right: 15px solid grey; |
|||
} |
@ -0,0 +1,158 @@ |
|||
<!doctype html> |
|||
<html> |
|||
<head> |
|||
<title>Two-party ECDSA signature generation</title> |
|||
<link rel="stylesheet" type="text/css" href="demo.css"/> |
|||
<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js"></script> |
|||
<script type="text/javascript"> |
|||
jQuery(function ($) { |
|||
var worker = new Worker("split-key.js"); |
|||
|
|||
worker.onmessage = function (event) { |
|||
var data = event.data; |
|||
|
|||
switch (data.cmd) { |
|||
case "ff": |
|||
$("#"+data.field).val(data.value); |
|||
break; |
|||
case "log": |
|||
if (console && "function" === typeof console.log) { |
|||
console.log.apply(console, data.args); |
|||
} |
|||
break; |
|||
} |
|||
}; |
|||
worker.onerror = function (error) { |
|||
console.error(error); |
|||
}; |
|||
|
|||
worker.postMessage("start"); |
|||
}); |
|||
</script> |
|||
</head> |
|||
<body> |
|||
<h1>Two-party ECDSA signature generation</h1> |
|||
<p><strong>Initialization</strong></p> |
|||
<div class="alice"> |
|||
<p>Alice starts out with her share of the private key d<sub>1</sub></p> |
|||
<div> |
|||
<label for="d1">d<sub>1</sub>=</label> |
|||
<input id="d1" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>And a Paillier keypair pk/sk</p> |
|||
<div> |
|||
<label for="p1_n">n=</label> |
|||
<input id="p1_n" type="text" readonly="readonly"/> |
|||
</div> |
|||
<div> |
|||
<label for="p1_g">g=</label> |
|||
<input id="p1_g" type="text" readonly="readonly"/> |
|||
</div> |
|||
<div> |
|||
<label for="p1_l">λ=</label> |
|||
<input id="p1_l" type="text" readonly="readonly"/> |
|||
</div> |
|||
<div> |
|||
<label for="p1_m">μ=</label> |
|||
<input id="p1_m" type="text" readonly="readonly"/> |
|||
</div> |
|||
</div> |
|||
<div class="bob"> |
|||
<p>Bob starts out with his share d<sub>2</sub> of the private key d</p> |
|||
<div> |
|||
<label for="d2">d<sub>2</sub>=</label> |
|||
<input id="d2" type="text" readonly="readonly"/> |
|||
</div> |
|||
</div> |
|||
<p><strong>Protocol</strong></p> |
|||
<div class="alice"> |
|||
<p>First Alice generates her share of the one-time secret k<sub>1</sub></p> |
|||
<div> |
|||
<label for="k1">k<sub>1</sub>=</label> |
|||
<input id="k1" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>And its inverse z<sub>1</sub> = (k<sub>1</sub>)<sup>-1</sup> mod n</p> |
|||
<div> |
|||
<label for="z1">z<sub>1</sub>=</label> |
|||
<input id="z1" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>She also calculates Q<sub>1</sub> = k<sub>1</sub>G</p> |
|||
<div> |
|||
<label for="q1">Q<sub>1</sub>=</label> |
|||
<input id="q1" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>She then encrypts z<sub>1</sub> with her Paillier secret to create α = E<sub>pk</sub>(z<sub>1</sub>)</p> |
|||
<div> |
|||
<label for="alpha">α=</label> |
|||
<input id="alpha" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>And β = E<sub>pk</sub>(d<sub>1</sub>z<sub>1</sub> mod n)</p> |
|||
<div> |
|||
<label for="beta">β=</label> |
|||
<input id="beta" type="text" readonly="readonly"/> |
|||
</div> |
|||
</div> |
|||
<div class="messageright"><div class="arrow"></div> |
|||
Q<sub>1</sub>, α, β, message, e, pk |
|||
</div> |
|||
<div class="bob"> |
|||
<p>Bob validates Q<sub>1</sub> by ensuring that |
|||
<ol> |
|||
<li>Q<sub>1</sub> ≠ O</li> |
|||
<li>x<sub>Q<sub>1</sub></sub> and y<sub>Q<sub>1</sub></sub> are in the interval [1,n - 1]</li> |
|||
<li>y<sub>Q<sub>1</sub></sub><sup>2</sup> ≡ x<sub>Q<sub>1</sub></sub><sup>3</sup> + ax<sub>Q<sub>1</sub></sub> + b (mod p)</li> |
|||
<li>nQ<sub>1</sub> = O</li> |
|||
</ol></p> |
|||
<p>And verifies the message to be signed</p> |
|||
<p>He then generates his share k<sub>2</sub> of the private one-time value k</p> |
|||
<div> |
|||
<label for="k2">k<sub>2</sub>=</label> |
|||
<input id="k2" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>And its inverse z<sub>2</sub> = (k<sub>2</sub>)<sup>-1</sup> mod n</p> |
|||
<div> |
|||
<label for="z2">z<sub>2</sub>=</label> |
|||
<input id="z2" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>He can calculate r = x<sub>Q</sub> where Q(x<sub>Q</sub>, y<sub>Q</sub>) = k<sub>2</sub>Q<sub>1</sub></p> |
|||
<div> |
|||
<label for="r">r=</label> |
|||
<input id="r" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>And Q<sub>2</sub> = k<sub>2</sub>G</p> |
|||
<div> |
|||
<label for="q2">Q<sub>2</sub>=</label> |
|||
<input id="q2" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>Bob prepares a random value c to use for blinding<p> |
|||
<div> |
|||
<label for="c">c=</label> |
|||
<input id="c" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>Finally he calculates σ = (α ×<sub>pk</sub> z<sub>2</sub>e) +<sub>pk</sub> (β ×<sub>pk</sub> z<sub>2</sub>d<sub>2</sub>r) +<sub>pk</sub> E<sub>pk</sub>(cn)</p> |
|||
<div> |
|||
<label for="sigma">σ=</label> |
|||
<input id="sigma" type="text" readonly="readonly"/> |
|||
</div> |
|||
</div> |
|||
<div class="messageleft"><div class="arrow"></div> |
|||
Q<sub>2</sub>, r, σ |
|||
</div> |
|||
<div class="alice"> |
|||
<p>Alice confirms Q<sub>2</sub> is a valid public point |
|||
<ol> |
|||
<li>Q<sub>2</sub> ≠ O</li> |
|||
<li>x<sub>Q<sub>2</sub></sub> and y<sub>Q<sub>2</sub></sub> are in the interval [1,n - 1]</li> |
|||
<li>y<sub>Q<sub>2</sub></sub><sup>2</sup> ≡ x<sub>Q<sub>2</sub></sub><sup>3</sup> + ax<sub>Q<sub>2</sub></sub> + b (mod p)</li> |
|||
<li>nQ<sub>2</sub> = O</li> |
|||
</ol></p> |
|||
<p>She now calculates r = x<sub>Q</sub> where Q = k<sub>1</sub>Q<sub>2</sub> and matches it against what Bob claimed</p> |
|||
<p>She decrypts σ to receive s = D<sub>sk</sub>(σ)</p> |
|||
<div> |
|||
<label for="s">s=</label> |
|||
<input id="s" type="text" readonly="readonly"/> |
|||
</div> |
|||
<p>She verifies the signature using r and the combined public key before publishing.</p> |
|||
</div> |
|||
</body> |
|||
</html> |
@ -0,0 +1,229 @@ |
|||
var window = this; |
|||
|
|||
importScripts( |
|||
"../src/crypto-js/crypto.js", |
|||
"../src/crypto-js/sha256.js", |
|||
"../src/jsbn/prng4.js", |
|||
"../src/jsbn/rng.js", |
|||
"../src/jsbn/jsbn.js", |
|||
"../src/jsbn/jsbn2.js", |
|||
|
|||
"../src/jsbn/ec.js", |
|||
"../src/jsbn/sec.js", |
|||
"../src/events/eventemitter.js", |
|||
"../src/bitcoin.js", |
|||
"../src/util.js", |
|||
"../src/base58.js", |
|||
|
|||
"../src/address.js", |
|||
"../src/ecdsa.js", |
|||
"../src/paillier.js" |
|||
); |
|||
|
|||
function hex(value) { |
|||
if ("function" === typeof value.getEncoded) { |
|||
return Crypto.util.bytesToHex(value.getEncoded()); |
|||
} else if ("function" === typeof value.toByteArrayUnsigned) { |
|||
return Crypto.util.bytesToHex(value.toByteArrayUnsigned()); |
|||
} else if (Array.isArray(value)) { |
|||
return Crypto.util.bytesToHex(value); |
|||
} |
|||
return value; |
|||
}; |
|||
function ff(field, value) { |
|||
value = hex(value); |
|||
postMessage({ "cmd": "ff", "field": field, "value": value }); |
|||
}; |
|||
|
|||
function log() { |
|||
postMessage({ "cmd": "log", "args": Array.prototype.slice.apply(arguments) }); |
|||
}; |
|||
|
|||
self.onmessage = function (event) { |
|||
var ecparams = getSECCurveByName("secp256k1"); |
|||
var rng = new SecureRandom(); |
|||
|
|||
var G = ecparams.getG(); |
|||
var n = ecparams.getN(); |
|||
|
|||
G.validate(); |
|||
|
|||
var Alice = function (pubShare) { |
|||
this.d1 = Bitcoin.ECDSA.getBigRandom(n); |
|||
ff('d1', this.d1); |
|||
|
|||
this.paillier = Bitcoin.Paillier.generate(n.bitLength()*2+ |
|||
Math.floor(Math.random()*10)); |
|||
|
|||
ff('p1_n', this.paillier.pub.n); |
|||
ff('p1_g', this.paillier.pub.g); |
|||
ff('p1_l', this.paillier.l); |
|||
ff('p1_m', this.paillier.m); |
|||
}; |
|||
var Bob = function () { |
|||
this.d2 = Bitcoin.ECDSA.getBigRandom(n); |
|||
ff('d2', this.d2); |
|||
}; |
|||
|
|||
Alice.prototype.getPub = function (P) { |
|||
if (this.pub) return this.pub; |
|||
|
|||
P.validate(); |
|||
|
|||
return this.pub = P.multiply(this.d1).getEncoded(); |
|||
}; |
|||
|
|||
Bob.prototype.getPubShare = function () { |
|||
return G.multiply(this.d2); |
|||
}; |
|||
|
|||
Alice.prototype.step1 = function (message) { |
|||
var hash = Crypto.SHA256(Crypto.SHA256(message, {asBytes: true}), {asBytes: true}); |
|||
this.e = BigInteger.fromByteArrayUnsigned(hash).mod(n); |
|||
|
|||
this.k1 = Bitcoin.ECDSA.getBigRandom(n); |
|||
ff('k1', this.k1); |
|||
|
|||
this.z1 = this.k1.modInverse(n); |
|||
ff('z1', this.z1); |
|||
|
|||
var Q1 = G.multiply(this.k1); |
|||
ff('q1', Q1); |
|||
|
|||
var alpha = this.paillier.encrypt(this.z1); |
|||
var beta = this.paillier.encrypt(this.d1.multiply(this.z1).mod(n)); |
|||
|
|||
ff('alpha', alpha); |
|||
ff('beta', beta); |
|||
|
|||
// TODO: Generate a proof that alpha and beta are safe
|
|||
|
|||
return { |
|||
message: message, |
|||
e: this.e, |
|||
Q1: Q1, |
|||
alpha: alpha, |
|||
beta: beta, |
|||
paillier: this.paillier.pub |
|||
}; |
|||
}; |
|||
|
|||
Bob.prototype.step2 = function (pkg) { |
|||
// ... In real life we would check that message is a valid transaction and
|
|||
// does what we want.
|
|||
|
|||
// Throws exception on error
|
|||
pkg.Q1.validate(); |
|||
|
|||
var hash = Crypto.SHA256(Crypto.SHA256(message, {asBytes: true}), {asBytes: true}); |
|||
this.e = BigInteger.fromByteArrayUnsigned(hash).mod(n); |
|||
|
|||
if (!this.e.equals(pkg.e)) { |
|||
throw new Error('We arrived at different values for e.'); |
|||
} |
|||
|
|||
this.paillier = pkg.paillier; |
|||
this.alpha = pkg.alpha; |
|||
this.beta = pkg.beta; |
|||
|
|||
this.k2 = Bitcoin.ECDSA.getBigRandom(n); |
|||
ff('k2', this.k2); |
|||
|
|||
this.z2 = this.k2.modInverse(n); |
|||
ff('z2', this.z2); |
|||
|
|||
var Q2 = G.multiply(this.k2); |
|||
ff('q2', Q2); |
|||
|
|||
var Q = pkg.Q1.multiply(this.k2); |
|||
this.r = Q.getX().toBigInteger().mod(n); |
|||
ff('r', this.r); |
|||
|
|||
if (this.r.equals(BigInteger.ZERO)) { |
|||
throw new Error('r must not be zero.'); |
|||
} |
|||
|
|||
var c = Bitcoin.ECDSA.getBigRandom(this.paillier.n.divide(n)); |
|||
ff('c', c); |
|||
|
|||
var p = this.paillier; |
|||
var s_a = p.multiply(this.alpha, this.e.multiply(this.z2)); |
|||
var s_b = p.multiply(this.beta, this.r.multiply(this.d2).multiply(this.z2)); |
|||
var sigma = p.add(p.addCrypt(s_a, s_b), c.multiply(n)); |
|||
ff('sigma', sigma); |
|||
|
|||
return { |
|||
Q2: Q2, |
|||
r: this.r, |
|||
sigma: sigma |
|||
}; |
|||
}; |
|||
|
|||
Alice.prototype.step3 = function (pkg) { |
|||
pkg.Q2.validate(); |
|||
|
|||
var Q = pkg.Q2.multiply(this.k1); |
|||
this.r = Q.getX().toBigInteger().mod(n); |
|||
|
|||
if (!this.r.equals(pkg.r)) { |
|||
throw new Error('Could not confirm value for r.'); |
|||
} |
|||
|
|||
if (this.r.equals(BigInteger.ZERO)) { |
|||
throw new Error('r must not be zero.'); |
|||
} |
|||
|
|||
var s = this.paillier.decrypt(pkg.sigma).mod(n); |
|||
ff('s', s); |
|||
|
|||
var sig = Bitcoin.ECDSA.serializeSig(this.r, s); |
|||
|
|||
var hash = this.e.toByteArrayUnsigned(); |
|||
if (!Bitcoin.ECDSA.verify(hash, sig, this.getPub())) { |
|||
throw new Error('Signature failed to verify.'); |
|||
} |
|||
|
|||
return { |
|||
r: this.r, |
|||
s: s |
|||
}; |
|||
}; |
|||
|
|||
var message = "testmessage"; |
|||
|
|||
var bob = new Bob(); |
|||
var pubShare = bob.getPubShare(); |
|||
|
|||
var alice = new Alice(pubShare); |
|||
var pub = alice.getPub(pubShare); |
|||
|
|||
var pkg1 = alice.step1(message); |
|||
var pkg2 = bob.step2(pkg1); |
|||
var pkg3 = alice.step3(pkg2); |
|||
|
|||
var sig = Bitcoin.ECDSA.serializeSig(pkg3.r, pkg3.s); |
|||
|
|||
var kChk = alice.k1.multiply(bob.k2); |
|||
var rChk = G.multiply(kChk).getX().toBigInteger(); |
|||
log("r :", hex(pkg3.r)); |
|||
log("r/CHK:", hex(rChk)); |
|||
|
|||
var hash = Crypto.SHA256(Crypto.SHA256(message, {asBytes: true}), {asBytes: true}); |
|||
var eChk = BigInteger.fromByteArrayUnsigned(hash).mod(n); |
|||
var dChk = alice.d1.multiply(bob.d2); |
|||
var sChk = kChk.modInverse(n).multiply(eChk.add(dChk.multiply(rChk))).mod(n); |
|||
log("s :", hex(pkg3.s)); |
|||
log("s/CHK:", hex(sChk)); |
|||
|
|||
var sigChk = Bitcoin.ECDSA.serializeSig(rChk, sChk); |
|||
log("sig :", hex(sig)); |
|||
log("sig/CHK:", hex(sigChk)); |
|||
|
|||
log("ver :", Bitcoin.ECDSA.verify(hash, sig, pub)); |
|||
log("ver/CHK:", Bitcoin.ECDSA.verify(hash, sigChk, pub)); |
|||
log("ver/CTL:", Bitcoin.ECDSA.verify(hash, Bitcoin.ECDSA.sign(hash, dChk), pub)); |
|||
|
|||
var priv = Bitcoin.ECDSA.getBigRandom(n); |
|||
pub = G.multiply(priv).getEncoded(); |
|||
log("ver/GEN:", Bitcoin.ECDSA.verify(hash, Bitcoin.ECDSA.sign(hash, priv), pub)); |
|||
}; |
@ -0,0 +1,97 @@ |
|||
Bitcoin.Paillier = (function () { |
|||
var rng = new SecureRandom(); |
|||
var TWO = BigInteger.valueOf(2); |
|||
|
|||
var Paillier = { |
|||
generate: function (bitLength) { |
|||
var p, q; |
|||
do { |
|||
p = new BigInteger(bitLength, 1, rng); |
|||
q = new BigInteger(bitLength, 1, rng); |
|||
} while (p.equals(q)); |
|||
|
|||
var n = p.multiply(q); |
|||
|
|||
// p - 1
|
|||
var p1 = p.subtract(BigInteger.ONE); |
|||
// q - 1
|
|||
var q1 = q.subtract(BigInteger.ONE); |
|||
|
|||
var nSq = n.multiply(n); |
|||
|
|||
// lambda
|
|||
var l = p1.multiply(q1).divide(p1.gcd(q1)); |
|||
|
|||
var coprimeBitLength = n.bitLength() - Math.floor(Math.random()*10); |
|||
|
|||
var alpha = new BigInteger(coprimeBitLength, 1, rng); |
|||
var beta = new BigInteger(coprimeBitLength, 1, rng); |
|||
|
|||
var g = alpha.multiply(n).add(BigInteger.ONE) |
|||
.multiply(beta.modPow(n,nSq)).mod(nSq); |
|||
|
|||
// mu
|
|||
var m = g.modPow(l,nSq).mod(nSq) |
|||
.subtract(BigInteger.ONE).divide(n).modInverse(n); |
|||
|
|||
return new Paillier.PrivateKey(n,g,l,m,nSq); |
|||
} |
|||
}; |
|||
|
|||
Paillier.PublicKey = function (n,g,nSq) { |
|||
this.n = n; |
|||
this.g = g; |
|||
this.nSq = nSq || n.multiply(n); |
|||
}; |
|||
|
|||
Paillier.PublicKey.prototype.encrypt = function (i, r) { |
|||
if (!r) { |
|||
var coprimeBitLength = this.n.bitLength() - Math.floor(Math.random()*10); |
|||
r = new BigInteger(coprimeBitLength, 1, rng); |
|||
} |
|||
return this.g.modPow(i,this.nSq).multiply(r.modPow(this.n,this.nSq)) |
|||
.mod(this.nSq); |
|||
}; |
|||
|
|||
Paillier.PublicKey.prototype.add = function (c, f) { |
|||
return c.multiply(this.encrypt(f)).mod(this.nSq); |
|||
}; |
|||
|
|||
Paillier.PublicKey.prototype.addCrypt = function (c, f) { |
|||
return c.multiply(f).mod(this.nSq); |
|||
}; |
|||
|
|||
Paillier.PublicKey.prototype.multiply = function (c, f) { |
|||
return c.modPow(f, this.nSq); |
|||
}; |
|||
|
|||
Paillier.PrivateKey = function (n,g,l,m,nSq) { |
|||
this.l = l; |
|||
this.m = m; |
|||
this.n = n; |
|||
this.nSq = nSq || n.multiply(n); |
|||
this.pub = new Paillier.PublicKey(n,g,this.nSq); |
|||
}; |
|||
|
|||
Paillier.PrivateKey.prototype.encrypt = function (m) { |
|||
return this.pub.encrypt(m); |
|||
}; |
|||
|
|||
Paillier.PrivateKey.prototype.decrypt = function (c) { |
|||
return c.modPow(this.l, this.nSq).mod(this.nSq).subtract(BigInteger.ONE) |
|||
.divide(this.n).multiply(this.m).mod(this.n); |
|||
}; |
|||
|
|||
Paillier.PrivateKey.prototype.decryptR = function (c, i) { |
|||
if (!i) { |
|||
i = this.decrypt(c); |
|||
} |
|||
var rn = c.multiply(this.pub.g.modPow(i, this.nSq).modInverse(this.nSq)) |
|||
.mod(this.nSq); |
|||
var a = this.l.modInverse(this.n).multiply(this.n.subtract(BigInteger.ONE)); |
|||
var e = a.multiply(this.l).add(BigInteger.ONE).divide(this.n); |
|||
return rn.modPow(e, this.n); |
|||
}; |
|||
|
|||
return Paillier; |
|||
})(); |
Loading…
Reference in new issue