|
|
@ -115,21 +115,27 @@ function verifyRaw (curve, e, signature, Q) { |
|
|
|
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false |
|
|
|
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false |
|
|
|
|
|
|
|
// c = s^-1 mod n
|
|
|
|
var c = s.modInverse(n) |
|
|
|
// Compute s^-1
|
|
|
|
var sInv = s.modInverse(n) |
|
|
|
|
|
|
|
// 1.4.4 Compute u1 = es^−1 mod n
|
|
|
|
// u2 = rs^−1 mod n
|
|
|
|
var u1 = e.multiply(c).mod(n) |
|
|
|
var u2 = r.multiply(c).mod(n) |
|
|
|
var u1 = e.multiply(sInv).mod(n) |
|
|
|
var u2 = r.multiply(sInv).mod(n) |
|
|
|
|
|
|
|
// 1.4.5 Compute R = (xR, yR) = u1G + u2Q
|
|
|
|
// 1.4.5 Compute R = (xR, yR)
|
|
|
|
// R = u1G + u2Q
|
|
|
|
var R = G.multiplyTwo(u1, Q, u2) |
|
|
|
var v = R.affineX.mod(n) |
|
|
|
|
|
|
|
// 1.4.5 (cont.) Enforce R is not at infinity
|
|
|
|
if (curve.isInfinity(R)) return false |
|
|
|
|
|
|
|
// 1.4.6 Convert the field element R.x to an integer
|
|
|
|
var xR = R.affineX |
|
|
|
|
|
|
|
// 1.4.7 Set v = xR mod n
|
|
|
|
var v = xR.mod(n) |
|
|
|
|
|
|
|
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
|
|
|
|
return v.equals(r) |
|
|
|
} |
|
|
|