Browse Source

Merge pull request #208 from dcousens/ecurve

Ecurve
hk-custom-address
Wei Lu 11 years ago
parent
commit
ad9a73a81b
  1. 2
      package.json
  2. 419
      src/ec.js
  3. 55
      src/ecdsa.js
  4. 12
      src/eckey.js
  5. 13
      src/ecpubkey.js
  6. 29
      src/hdnode.js
  7. 4
      src/index.js
  8. 4
      src/message.js
  9. 84
      src/sec.js
  10. 84
      test/ec.js
  11. 26
      test/ecdsa.js
  12. 14
      test/ecpubkey.js
  13. 60
      test/fixtures/ec.json
  14. 7
      test/hdnode.js

2
package.json

@ -43,7 +43,6 @@
"coveralls": "~2.10.0",
"mocha-lcov-reporter": "0.0.1",
"helloblock-js": "^0.2.1",
"request": "~2.34.0",
"browserify": "~4.1.5",
"jshint": "2.5.1"
},
@ -72,6 +71,7 @@
"dependencies": {
"bigi": "1.1.0",
"crypto-js": "3.1.2-3",
"ecurve": "0.7.0",
"secure-random": "0.2.1"
}
}

419
src/ec.js

@ -1,419 +0,0 @@
// Basic Javascript Elliptic Curve implementation
// Ported loosely from BouncyCastle's Java EC code
// Only Fp curves implemented for now
var assert = require('assert')
var BigInteger = require('bigi')
// constants
var THREE = BigInteger.valueOf(3)
function ECFieldElementFp(q,x) {
this.x = x
// TODO if (x.compareTo(q) >= 0) error
this.q = q
}
function feFpEquals(other) {
if (other == this) return true
return (this.q.equals(other.q) && this.x.equals(other.x))
}
function feFpToBigInteger() {
return this.x
}
function feFpNegate() {
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q))
}
function feFpAdd(b) {
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q))
}
function feFpSubtract(b) {
return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q))
}
function feFpMultiply(b) {
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q))
}
function feFpSquare() {
return new ECFieldElementFp(this.q, this.x.square().mod(this.q))
}
function feFpDivide(b) {
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q))
}
ECFieldElementFp.prototype.equals = feFpEquals
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger
ECFieldElementFp.prototype.negate = feFpNegate
ECFieldElementFp.prototype.add = feFpAdd
ECFieldElementFp.prototype.subtract = feFpSubtract
ECFieldElementFp.prototype.multiply = feFpMultiply
ECFieldElementFp.prototype.square = feFpSquare
ECFieldElementFp.prototype.divide = feFpDivide
// ----------------
// ECPointFp
// constructor
function ECPointFp(curve,x,y,z) {
this.curve = curve
this.x = x
this.y = y
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
this.z = (z == undefined) ? BigInteger.ONE : z
this.zinv = null
//TODO: compression flag
}
function pointFpGetX() {
if (this.zinv === null) {
this.zinv = this.z.modInverse(this.curve.q)
}
return this.curve.fromBigInteger(this.x.toBigInteger().multiply(this.zinv).mod(this.curve.q))
}
function pointFpGetY() {
if (this.zinv === null) {
this.zinv = this.z.modInverse(this.curve.q)
}
return this.curve.fromBigInteger(this.y.toBigInteger().multiply(this.zinv).mod(this.curve.q))
}
function pointFpEquals(other) {
if (other == this) return true
if (this.isInfinity()) return other.isInfinity()
if (other.isInfinity()) return this.isInfinity()
// u = Y2 * Z1 - Y1 * Z2
var u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q)
if (u.signum() !== 0) return false
// v = X2 * Z1 - X1 * Z2
var v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q)
return v.signum() === 0
}
function pointFpIsInfinity() {
if ((this.x === null) && (this.y === null)) return true
return this.z.signum() === 0 && this.y.toBigInteger().signum() !== 0
}
function pointFpNegate() {
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z)
}
function pointFpAdd(b) {
if (this.isInfinity()) return b
if (b.isInfinity()) return this
var x1 = this.x.toBigInteger()
var y1 = this.y.toBigInteger()
var x2 = b.x.toBigInteger()
var y2 = b.y.toBigInteger()
// u = Y2 * Z1 - Y1 * Z2
var u = y2.multiply(this.z).subtract(y1.multiply(b.z)).mod(this.curve.q)
// v = X2 * Z1 - X1 * Z2
var v = x2.multiply(this.z).subtract(x1.multiply(b.z)).mod(this.curve.q)
if (v.signum() === 0) {
if (u.signum() === 0) {
return this.twice() // this == b, so double
}
return this.curve.getInfinity() // this = -b, so infinity
}
var v2 = v.square()
var v3 = v2.multiply(v)
var x1v2 = x1.multiply(v2)
var zu2 = u.square().multiply(this.z)
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q)
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q)
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q)
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3)
}
function pointFpTwice() {
if (this.isInfinity()) return this
if (this.y.toBigInteger().signum() === 0) return this.curve.getInfinity()
var x1 = this.x.toBigInteger()
var y1 = this.y.toBigInteger()
var y1z1 = y1.multiply(this.z)
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q)
var a = this.curve.a.toBigInteger()
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE)
if (a.signum() !== 0) {
w = w.add(this.z.square().multiply(a))
}
w = w.mod(this.curve.q)
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q)
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.pow(3)).mod(this.curve.q)
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.pow(3).shiftLeft(3).mod(this.curve.q)
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3)
}
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
function pointFpMultiply(k) {
if (this.isInfinity()) return this
if (k.signum() === 0) return this.curve.getInfinity()
var e = k
var h = e.multiply(THREE)
var neg = this.negate()
var R = this
for (var i = h.bitLength() - 2; i > 0; --i) {
R = R.twice()
var hBit = h.testBit(i)
var eBit = e.testBit(i)
if (hBit != eBit) {
R = R.add(hBit ? this : neg)
}
}
return R
}
// Compute this*j + x*k (simultaneous multiplication)
function pointFpMultiplyTwo(j,x,k) {
var i
if (j.bitLength() > k.bitLength())
i = j.bitLength() - 1
else
i = k.bitLength() - 1
var R = this.curve.getInfinity()
var both = this.add(x)
while (i >= 0) {
R = R.twice()
if (j.testBit(i)) {
if (k.testBit(i)) {
R = R.add(both)
}
else {
R = R.add(this)
}
}
else {
if (k.testBit(i)) {
R = R.add(x)
}
}
--i
}
return R
}
ECPointFp.prototype.getX = pointFpGetX
ECPointFp.prototype.getY = pointFpGetY
ECPointFp.prototype.equals = pointFpEquals
ECPointFp.prototype.isInfinity = pointFpIsInfinity
ECPointFp.prototype.negate = pointFpNegate
ECPointFp.prototype.add = pointFpAdd
ECPointFp.prototype.twice = pointFpTwice
ECPointFp.prototype.multiply = pointFpMultiply
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo
// ----------------
// ECCurveFp
// constructor
function ECCurveFp(q,a,b) {
this.q = q
this.a = this.fromBigInteger(a)
this.b = this.fromBigInteger(b)
this.infinity = new ECPointFp(this, null, null)
}
function curveFpGetQ() {
return this.q
}
function curveFpGetA() {
return this.a
}
function curveFpGetB() {
return this.b
}
function curveFpEquals(other) {
if (other == this) return true
return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b))
}
function curveFpGetInfinity() {
return this.infinity
}
function curveFpFromBigInteger(x) {
return new ECFieldElementFp(this.q, x)
}
ECCurveFp.prototype.getQ = curveFpGetQ
ECCurveFp.prototype.getA = curveFpGetA
ECCurveFp.prototype.getB = curveFpGetB
ECCurveFp.prototype.equals = curveFpEquals
ECCurveFp.prototype.getInfinity = curveFpGetInfinity
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger
ECFieldElementFp.prototype.getByteLength = function () {
return Math.floor((this.toBigInteger().bitLength() + 7) / 8)
}
ECPointFp.prototype.getEncoded = function(compressed) {
var x = this.getX().toBigInteger()
var y = this.getY().toBigInteger()
var buffer
// 0x02/0x03 | X
if (compressed) {
buffer = new Buffer(33)
buffer.writeUInt8(y.isEven() ? 0x02 : 0x03, 0)
// 0x04 | X | Y
} else {
buffer = new Buffer(65)
buffer.writeUInt8(0x04, 0)
y.toBuffer(32).copy(buffer, 33)
}
x.toBuffer(32).copy(buffer, 1)
return buffer
}
ECPointFp.decodeFrom = function (curve, buffer) {
var type = buffer.readUInt8(0)
var compressed = type !== 0x04
var x = BigInteger.fromBuffer(buffer.slice(1, 33))
var y
if (compressed) {
assert.equal(buffer.length, 33, 'Invalid sequence length')
assert(type === 0x02 || type === 0x03, 'Invalid sequence tag')
var isYEven = (type === 0x02)
var a = curve.getA().toBigInteger()
var b = curve.getB().toBigInteger()
var p = curve.getQ()
// We precalculate (p + 1) / 4 where p is the field order
if (!curve.P_OVER_FOUR) {
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2)
}
// Convert x to point
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p)
var beta = alpha.modPow(curve.P_OVER_FOUR, p)
// If beta is even, but y isn't, or vice versa, then convert it,
// otherwise we're done and y == beta.
y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta
} else {
assert.equal(buffer.length, 65, 'Invalid sequence length')
y = BigInteger.fromBuffer(buffer.slice(33))
}
var Q = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y))
return {
Q: Q,
compressed: compressed
}
}
ECPointFp.prototype.isOnCurve = function () {
var x = this.getX().toBigInteger()
var y = this.getY().toBigInteger()
var a = this.curve.getA().toBigInteger()
var b = this.curve.getB().toBigInteger()
var p = this.curve.getQ()
var lhs = y.square().mod(p)
var rhs = x.pow(3).add(a.multiply(x)).add(b).mod(p)
return lhs.equals(rhs)
}
ECPointFp.prototype.toString = function () {
return '('+this.getX().toBigInteger().toString()+','+
this.getY().toBigInteger().toString()+')'
}
/**
* Validate an elliptic curve point.
*
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
*/
ECPointFp.prototype.validate = function () {
var n = this.curve.getQ()
// Check Q != O
if (this.isInfinity()) {
throw new Error("Point is at infinity.")
}
// Check coordinate bounds
var x = this.getX().toBigInteger()
var y = this.getY().toBigInteger()
if (x.compareTo(BigInteger.ONE) < 0 ||
x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('x coordinate out of bounds')
}
if (y.compareTo(BigInteger.ONE) < 0 ||
y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('y coordinate out of bounds')
}
// Check y^2 = x^3 + ax + b (mod n)
if (!this.isOnCurve()) {
throw new Error("Point is not on the curve.")
}
// Check nQ = 0 (Q is a scalar multiple of G)
if (this.multiply(n).isInfinity()) {
// TODO: This check doesn't work - fix.
throw new Error("Point is not a scalar multiple of G.")
}
return true
}
module.exports = ECCurveFp
module.exports.ECPointFp = ECPointFp

55
src/ecdsa.js

@ -2,9 +2,9 @@ var assert = require('assert')
var crypto = require('./crypto')
var BigInteger = require('bigi')
var ECPointFp = require('./ec').ECPointFp
var Point = require('ecurve').Point
function deterministicGenerateK(ecparams, hash, d) {
function deterministicGenerateK(curve, hash, d) {
assert(Buffer.isBuffer(hash), 'Hash must be a Buffer, not ' + hash)
assert.equal(hash.length, 32, 'Hash must be 256 bit')
assert(d instanceof BigInteger, 'Private key must be a BigInteger')
@ -22,23 +22,23 @@ function deterministicGenerateK(ecparams, hash, d) {
v = crypto.HmacSHA256(v, k)
v = crypto.HmacSHA256(v, k)
var n = ecparams.getN()
var n = curve.params.n
var kB = BigInteger.fromBuffer(v).mod(n)
assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value')
assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value')
assert(kB.compareTo(n) < 0, 'Invalid k value')
return kB
}
function sign(ecparams, hash, d) {
var k = deterministicGenerateK(ecparams, hash, d)
function sign(curve, hash, d) {
var k = deterministicGenerateK(curve, hash, d)
var n = ecparams.getN()
var G = ecparams.getG()
var n = curve.params.n
var G = curve.params.G
var Q = G.multiply(k)
var e = BigInteger.fromBuffer(hash)
var r = Q.getX().toBigInteger().mod(n)
var r = Q.affineX.mod(n)
assert.notEqual(r.signum(), 0, 'Invalid R value')
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n)
@ -54,15 +54,15 @@ function sign(ecparams, hash, d) {
return {r: r, s: s}
}
function verify(ecparams, hash, signature, Q) {
function verify(curve, hash, signature, Q) {
var e = BigInteger.fromBuffer(hash)
return verifyRaw(ecparams, e, signature, Q)
return verifyRaw(curve, e, signature, Q)
}
function verifyRaw(ecparams, e, signature, Q) {
var n = ecparams.getN()
var G = ecparams.getG()
function verifyRaw(curve, e, signature, Q) {
var n = curve.params.n
var G = curve.params.G
var r = signature.r
var s = signature.s
@ -76,7 +76,7 @@ function verifyRaw(ecparams, e, signature, Q) {
var u2 = r.multiply(c).mod(n)
var point = G.multiplyTwo(u1, Q, u2)
var v = point.getX().toBigInteger().mod(n)
var v = point.affineX.mod(n)
return v.equals(r)
}
@ -185,7 +185,7 @@ function parseSigCompact(buffer) {
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
function recoverPubKey(ecparams, e, signature, i) {
function recoverPubKey(curve, e, signature, i) {
assert.strictEqual(i & 3, i, 'The recovery param is more than two bits')
var r = signature.r
@ -199,12 +199,11 @@ function recoverPubKey(ecparams, e, signature, i) {
// first or second candidate key.
var isSecondKey = i >> 1
var n = ecparams.getN()
var G = ecparams.getG()
var curve = ecparams.getCurve()
var p = curve.getQ()
var a = curve.getA().toBigInteger()
var b = curve.getB().toBigInteger()
var n = curve.params.n
var G = curve.params.G
var p = curve.p
var a = curve.a
var b = curve.b
// We precalculate (p + 1) / 4 where p is the field order
if (!curve.P_OVER_FOUR) {
@ -223,8 +222,8 @@ function recoverPubKey(ecparams, e, signature, i) {
var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta
// 1.4 Check that nR isn't at infinity
var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y))
R.validate()
var R = Point.fromAffine(curve, x, y)
curve.validate(R)
// 1.5 Compute -e from e
var eNeg = e.negate().mod(n)
@ -234,9 +233,9 @@ function recoverPubKey(ecparams, e, signature, i) {
var rInv = r.modInverse(n)
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
Q.validate()
curve.validate(Q)
if (!verifyRaw(ecparams, e, signature, Q)) {
if (!verifyRaw(curve, e, signature, Q)) {
throw new Error("Pubkey recovery unsuccessful")
}
@ -254,9 +253,9 @@ function recoverPubKey(ecparams, e, signature, i) {
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam(ecparams, e, signature, Q) {
function calcPubKeyRecoveryParam(curve, e, signature, Q) {
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(ecparams, e, signature, i)
var Qprime = recoverPubKey(curve, e, signature, i)
if (Qprime.equals(Q)) {
return i

12
src/eckey.js

@ -7,14 +7,14 @@ var secureRandom = require('secure-random')
var BigInteger = require('bigi')
var ECPubKey = require('./ecpubkey')
var sec = require('./sec')
var ecparams = sec('secp256k1')
var ecurve = require('ecurve')
var curve = ecurve.getCurveByName('secp256k1')
function ECKey(d, compressed) {
assert(d.signum() > 0, 'Private key must be greater than 0')
assert(d.compareTo(ecparams.getN()) < 0, 'Private key must be less than the curve order')
assert(d.compareTo(curve.params.n) < 0, 'Private key must be less than the curve order')
var Q = ecparams.getG().multiply(d)
var Q = curve.params.G.multiply(d)
this.d = d
this.pub = new ECPubKey(Q, compressed)
@ -47,7 +47,7 @@ ECKey.makeRandom = function(compressed, rng) {
var buffer = new Buffer(rng(32))
var d = BigInteger.fromBuffer(buffer)
d = d.mod(ecparams.getN())
d = d.mod(curve.params.n)
return new ECKey(d, compressed)
}
@ -71,7 +71,7 @@ ECKey.prototype.toWIF = function(network) {
// Operations
ECKey.prototype.sign = function(hash) {
return ecdsa.sign(ecparams, hash, this.d)
return ecdsa.sign(curve, hash, this.d)
}
module.exports = ECKey

13
src/ecpubkey.js

@ -4,13 +4,12 @@ var ecdsa = require('./ecdsa')
var networks = require('./networks')
var Address = require('./address')
var ECPointFp = require('./ec').ECPointFp
var sec = require('./sec')
var ecparams = sec('secp256k1')
var ecurve = require('ecurve')
var curve = ecurve.getCurveByName('secp256k1')
function ECPubKey(Q, compressed) {
assert(Q instanceof ECPointFp, 'Expected ECPointFP, got ' + Q)
assert(Q instanceof ecurve.Point, 'Expected Point, got ' + Q)
if (compressed == undefined) compressed = true
assert.strictEqual(typeof compressed, 'boolean', 'Expected boolean, got ' + compressed)
@ -21,8 +20,8 @@ function ECPubKey(Q, compressed) {
// Static constructors
ECPubKey.fromBuffer = function(buffer) {
var decode = ECPointFp.decodeFrom(ecparams.getCurve(), buffer)
return new ECPubKey(decode.Q, decode.compressed)
var Q = ecurve.Point.decodeFrom(curve, buffer)
return new ECPubKey(Q, Q.compressed)
}
ECPubKey.fromHex = function(hex) {
@ -37,7 +36,7 @@ ECPubKey.prototype.getAddress = function(network) {
}
ECPubKey.prototype.verify = function(hash, signature) {
return ecdsa.verify(ecparams, hash, signature, this.Q)
return ecdsa.verify(curve, hash, signature, this.Q)
}
// Export functions

29
src/hdnode.js

@ -1,15 +1,14 @@
var assert = require('assert')
var base58check = require('./base58check')
var crypto = require('./crypto')
var networks = require('./networks')
var BigInteger = require('bigi')
var crypto = require('./crypto')
var ECKey = require('./eckey')
var ECPubKey = require('./ecpubkey')
var ECPointFp = require('./ec').ECPointFp
var networks = require('./networks')
var sec = require('./sec')
var ecparams = sec("secp256k1")
var ecurve = require('ecurve')
var curve = ecurve.getCurveByName('secp256k1')
function findBIP32ParamsByVersion(version) {
for (var name in networks) {
@ -100,20 +99,20 @@ HDNode.fromBuffer = function(buffer) {
if (params.isPrivate) {
assert.strictEqual(buffer.readUInt8(45), 0x00, 'Invalid private key')
var data = buffer.slice(46, 78)
var D = BigInteger.fromBuffer(data)
hd = new HDNode(D, chainCode, params.network)
var d = BigInteger.fromBuffer(data)
hd = new HDNode(d, chainCode, params.network)
// 33 bytes: public key data (0x02 + X or 0x03 + X)
} else {
var data = buffer.slice(45, 78)
var decode = ECPointFp.decodeFrom(ecparams.getCurve(), data)
assert.equal(decode.compressed, true, 'Invalid public key')
var Q = ecurve.Point.decodeFrom(curve, data)
assert.equal(Q.compressed, true, 'Invalid public key')
// Verify that the X coordinate in the public point corresponds to a point on the curve.
// If not, the extended public key is invalid.
decode.Q.validate()
curve.validate(Q)
hd = new HDNode(decode.Q, chainCode, params.network)
hd = new HDNode(Q, chainCode, params.network)
}
hd.depth = depth
@ -223,7 +222,7 @@ HDNode.prototype.derive = function(index) {
var pIL = BigInteger.fromBuffer(IL)
// In case parse256(IL) >= n, proceed with the next value for i
if (pIL.compareTo(ecparams.getN()) >= 0) {
if (pIL.compareTo(curve.params.n) >= 0) {
return this.derive(index + 1)
}
@ -231,7 +230,7 @@ HDNode.prototype.derive = function(index) {
var hd
if (this.privKey) {
// ki = parse256(IL) + kpar (mod n)
var ki = pIL.add(this.privKey.d).mod(ecparams.getN())
var ki = pIL.add(this.privKey.d).mod(curve.params.n)
// In case ki == 0, proceed with the next value for i
if (ki.signum() === 0) {
@ -244,10 +243,10 @@ HDNode.prototype.derive = function(index) {
} else {
// Ki = point(parse256(IL)) + Kpar
// = G*IL + Kpar
var Ki = ecparams.getG().multiply(pIL).add(this.pubKey.Q)
var Ki = curve.params.G.multiply(pIL).add(this.pubKey.Q)
// In case Ki is the point at infinity, proceed with the next value for i
if (Ki.isInfinity()) {
if (curve.isInfinity(Ki)) {
return this.derive(index + 1)
}

4
src/index.js

@ -1,4 +1,3 @@
var ec = require('./ec')
var T = require('./transaction')
module.exports = {
@ -8,16 +7,13 @@ module.exports = {
bufferutils: require('./bufferutils'),
convert: require('./convert'),
crypto: require('./crypto'),
ec: ec,
ecdsa: require('./ecdsa'),
ECKey: require('./eckey'),
ECPointFp: ec.ECPointFp,
ECPubKey: require('./ecpubkey'),
Message: require('./message'),
opcodes: require('./opcodes'),
HDNode: require('./hdnode'),
Script: require('./script'),
sec: require('./sec'),
Transaction: T.Transaction,
TransactionIn: T.TransactionIn,
TransactionOut: T.TransactionOut,

4
src/message.js

@ -9,8 +9,8 @@ var networks = require('./networks')
var Address = require('./address')
var ECPubKey = require('./ecpubkey')
var sec = require('./sec')
var ecparams = sec('secp256k1')
var ecurve = require('ecurve')
var ecparams = ecurve.getCurveByName('secp256k1')
function magicHash(message, network) {
var magicPrefix = new Buffer(network.magicPrefix)

84
src/sec.js

@ -1,84 +0,0 @@
// Named EC curves
var BigInteger = require('bigi')
var ECCurveFp = require('./ec')
var ECPointFp = ECCurveFp.ECPointFp
// ----------------
// X9ECParameters
// constructor
function X9ECParameters(curve,g,n,h) {
this.curve = curve
this.g = g
this.n = n
this.h = h
}
function x9getCurve() {
return this.curve
}
function x9getG() {
return this.g
}
function x9getN() {
return this.n
}
function x9getH() {
return this.h
}
X9ECParameters.prototype.getCurve = x9getCurve
X9ECParameters.prototype.getG = x9getG
X9ECParameters.prototype.getN = x9getN
X9ECParameters.prototype.getH = x9getH
function secp256r1() {
// p = 2^224 (2^32 - 1) + 2^192 + 2^96 - 1
var p = BigInteger.fromHex("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF")
var a = BigInteger.fromHex("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC")
var b = BigInteger.fromHex("5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B")
//byte[] S = BigInteger.fromHex("C49D360886E704936A6678E1139D26B7819F7E90")
var n = BigInteger.fromHex("FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551")
var h = BigInteger.ONE
var curve = new ECCurveFp(p, a, b)
var x = BigInteger.fromHex("6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296")
var y = BigInteger.fromHex("4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5")
var G = new ECPointFp(curve,
curve.fromBigInteger(x),
curve.fromBigInteger(y))
return new X9ECParameters(curve, G, n, h)
}
function secp256k1() {
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
var p = BigInteger.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
var a = BigInteger.ZERO
var b = BigInteger.fromHex("07")
//byte[] S = null
var n = BigInteger.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
var h = BigInteger.ONE
var curve = new ECCurveFp(p, a, b)
var x = BigInteger.fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
var y = BigInteger.fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
var G = new ECPointFp(curve,
curve.fromBigInteger(x),
curve.fromBigInteger(y))
return new X9ECParameters(curve, G, n, h)
}
function getSECCurveByName(name) {
return ({
"secp256k1": secp256k1,
"secp256r1": secp256r1
}[name])()
}
module.exports = getSECCurveByName

84
test/ec.js

@ -1,84 +0,0 @@
var assert = require('assert')
var sec = require('../src/sec')
var ecparams = sec('secp256k1')
var BigInteger = require('bigi')
var ECPointFp = require('../src/ec').ECPointFp
var fixtures = require('./fixtures/ec.json')
describe('ec', function() {
describe('ECPointFp', function() {
it('behaves correctly', function() {
var G = ecparams.getG()
var n = ecparams.getN()
assert.ok(G.multiply(n).isInfinity(), "Gn is infinite")
var k = BigInteger.ONE
var P = G.multiply(k)
assert.ok(!P.isInfinity(), "kG is not infinite")
assert.ok(P.isOnCurve(), "kG on curve")
assert.ok(P.multiply(n).isInfinity(), "kGn is infinite")
assert.ok(P.validate(), "kG validates as a public key")
})
describe('getEncoded', function() {
it('encodes a point correctly', function() {
fixtures.valid.ECPointFp.forEach(function(f) {
var curve = ecparams.getCurve()
var Q = new ECPointFp(
curve,
curve.fromBigInteger(new BigInteger(f.x)),
curve.fromBigInteger(new BigInteger(f.y))
)
var encoded = Q.getEncoded(f.compressed)
assert.equal(encoded.toString('hex'), f.hex)
})
})
})
describe('decodeFrom', function() {
it('decodes the correct point', function() {
fixtures.valid.ECPointFp.forEach(function(f) {
var curve = ecparams.getCurve()
var buffer = new Buffer(f.hex, 'hex')
var decoded = ECPointFp.decodeFrom(curve, buffer)
assert.equal(decoded.Q.getX().toBigInteger().toString(), f.x)
assert.equal(decoded.Q.getY().toBigInteger().toString(), f.y)
assert.equal(decoded.compressed, f.compressed)
})
})
fixtures.invalid.ECPointFp.forEach(function(f) {
it('throws on ' + f.description, function() {
var curve = ecparams.getCurve()
var buffer = new Buffer(f.hex, 'hex')
assert.throws(function() {
ECPointFp.decodeFrom(curve, buffer)
}, /Invalid sequence length|Invalid sequence tag/)
})
})
it('supports secp256r1', function() {
var f = fixtures.valid.ECPointFp[1]
var ecparams2 = sec('secp256r1')
var curve = ecparams2.getCurve()
var d = BigInteger.ONE
var Q = ecparams2.getG().multiply(d)
var buffer = Q.getEncoded(true)
var decoded = ECPointFp.decodeFrom(curve, buffer)
assert(Q.equals(decoded.Q))
assert(decoded.compressed, true)
})
})
})
})

26
test/ecdsa.js

@ -4,11 +4,11 @@ var ecdsa = require('../src/ecdsa')
var message = require('../src/message')
var networks = require('../src/networks')
var sec = require('../src/sec')
var ecparams = sec("secp256k1")
var BigInteger = require('bigi')
var ecurve = require('ecurve')
var curve = ecurve.getCurveByName('secp256k1')
var fixtures = require('./fixtures/ecdsa.json')
describe('ecdsa', function() {
@ -18,7 +18,7 @@ describe('ecdsa', function() {
var d = BigInteger.fromHex(f.d)
var h1 = crypto.sha256(f.message)
var k = ecdsa.deterministicGenerateK(ecparams, h1, d)
var k = ecdsa.deterministicGenerateK(curve, h1, d)
assert.equal(k.toHex(), f.k)
})
})
@ -29,12 +29,12 @@ describe('ecdsa', function() {
var d = BigInteger.ONE
var signature = new Buffer('INcvXVVEFyIfHLbDX+xoxlKFn3Wzj9g0UbhObXdMq+YMKC252o5RHFr0/cKdQe1WsBLUBi4morhgZ77obDJVuV0=', 'base64')
var Q = ecparams.getG().multiply(d)
var Q = curve.params.G.multiply(d)
var hash = message.magicHash('1111', networks.bitcoin)
var e = BigInteger.fromBuffer(hash)
var parsed = ecdsa.parseSigCompact(signature)
var Qprime = ecdsa.recoverPubKey(ecparams, e, parsed.signature, parsed.i)
var Qprime = ecdsa.recoverPubKey(curve, e, parsed.signature, parsed.i)
assert(Q.equals(Qprime))
})
})
@ -44,7 +44,7 @@ describe('ecdsa', function() {
it('produces a deterministic signature for \"' + f.message + '\"', function() {
var d = BigInteger.fromHex(f.d)
var hash = crypto.sha256(f.message)
var signature = ecdsa.sign(ecparams, hash, d)
var signature = ecdsa.sign(curve, hash, d)
assert.equal(signature.r.toString(), f.signature.r)
assert.equal(signature.s.toString(), f.signature.s)
@ -53,10 +53,10 @@ describe('ecdsa', function() {
it('should sign with low S value', function() {
var hash = crypto.sha256('Vires in numeris')
var sig = ecdsa.sign(ecparams, hash, BigInteger.ONE)
var sig = ecdsa.sign(curve, hash, BigInteger.ONE)
// See BIP62 for more information
var N_OVER_TWO = ecparams.getN().shiftRight(1)
var N_OVER_TWO = curve.params.n.shiftRight(1)
assert(sig.s.compareTo(N_OVER_TWO) <= 0)
})
})
@ -65,7 +65,7 @@ describe('ecdsa', function() {
fixtures.valid.forEach(function(f) {
it('verifies a valid signature for \"' + f.message + '\"', function() {
var d = BigInteger.fromHex(f.d)
var Q = ecparams.getG().multiply(d)
var Q = curve.params.G.multiply(d)
var signature = {
r: new BigInteger(f.signature.r),
@ -73,7 +73,7 @@ describe('ecdsa', function() {
}
var e = BigInteger.fromBuffer(crypto.sha256(f.message))
assert(ecdsa.verifyRaw(ecparams, e, signature, Q))
assert(ecdsa.verifyRaw(curve, e, signature, Q))
})
})
@ -85,9 +85,9 @@ describe('ecdsa', function() {
r: new BigInteger(f.signature.r),
s: new BigInteger(f.signature.s)
}
var Q = ecparams.getG().multiply(d)
var Q = curve.params.G.multiply(d)
assert.equal(ecdsa.verifyRaw(ecparams, e, signature, Q), false)
assert.equal(ecdsa.verifyRaw(curve, e, signature, Q), false)
})
})
})

14
test/ecpubkey.js

@ -1,25 +1,23 @@
var assert = require('assert')
var crypto = require('../src/crypto')
var networks = require('../src/networks')
var sec = require('../src/sec')
var ecparams = sec('secp256k1')
var BigInteger = require('bigi')
var ECPointFp = require('../src/ec').ECPointFp
var ECPubKey = require('../src/ecpubkey')
var ecurve = require('ecurve')
var curve = ecurve.getCurveByName('secp256k1')
var fixtures = require('./fixtures/ecpubkey.json')
describe('ECPubKey', function() {
var Q
beforeEach(function() {
var curve = ecparams.getCurve()
Q = new ECPointFp(
Q = ecurve.Point.fromAffine(
curve,
curve.fromBigInteger(new BigInteger(fixtures.Q.x)),
curve.fromBigInteger(new BigInteger(fixtures.Q.y))
new BigInteger(fixtures.Q.x),
new BigInteger(fixtures.Q.y)
)
})

60
test/fixtures/ec.json

@ -1,60 +0,0 @@
{
"valid": {
"ECPointFp": [
{
"x": "55066263022277343669578718895168534326250603453777594175500187360389116729240",
"y": "32670510020758816978083085130507043184471273380659243275938904335757337482424",
"compressed": false,
"hex": "0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8"
},
{
"x": "55066263022277343669578718895168534326250603453777594175500187360389116729240",
"y": "32670510020758816978083085130507043184471273380659243275938904335757337482424",
"compressed": true,
"hex": "0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798"
},
{
"x": "83225686012142088543596389522774768397204444195709443235253141114409346958144",
"y": "23739058578904784236915560265041168694780215705543362357495033621678991351768",
"compressed": true,
"hex": "02b80011a883a0fd621ad46dfc405df1e74bf075cbaf700fd4aebef6e96f848340"
},
{
"x": "30095590000961171681152428142595206241714764354580127609094760797518133922356",
"y": "93521207164355458151597931319591130635754976513751247168472016818884561919702",
"compressed": true,
"hex": "024289801366bcee6172b771cf5a7f13aaecd237a0b9a1ff9d769cabc2e6b70a34"
},
{
"x": "55066263022277343669578718895168534326250603453777594175500187360389116729240",
"y": "83121579216557378445487899878180864668798711284981320763518679672151497189239",
"compressed": true,
"hex": "0379be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798"
}
]
},
"invalid": {
"ECPointFp": [
{
"description": "Invalid sequence tag",
"hex": "0179be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798"
},
{
"description": "Sequence too short",
"hex": "0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10"
},
{
"description": "Sequence too short (compressed)",
"hex": "0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f8"
},
{
"description": "Sequence too long",
"hex": "0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b80000"
},
{
"description": "Sequence too long (compressed)",
"hex": "0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f817980000"
}
]
}
}

7
test/hdnode.js

@ -1,17 +1,18 @@
var assert = require('assert')
var networks = require('../src/networks')
var sec = require('../src/sec')
var ecparams = sec("secp256k1")
var BigInteger = require('bigi')
var HDNode = require('../src/hdnode')
var ecurve = require('ecurve')
var curve = ecurve.getCurveByName('secp256k1')
var fixtures = require('./fixtures/hdnode.json')
describe('HDNode', function() {
describe('Constructor', function() {
var d = BigInteger.ONE
var Q = ecparams.getG().multiply(d)
var Q = curve.params.G.multiply(d)
var chainCode = new Buffer(32)
chainCode.fill(1)

Loading…
Cancel
Save