Browse Source

Merge pull request #59 from bitcoinjs/remove-demo

remove demo
hk-custom-address
Kyle Drake 11 years ago
parent
commit
b6f6a10b36
  1. 50
      demo/demo.css
  2. 194
      demo/split-key.html
  3. 283
      demo/split-key.js

50
demo/demo.css

@ -1,50 +0,0 @@
p {
margin: 0.4em 0 0.2em;
}
input[type=text] {
width: 500px;
}
.alice, .bob {
margin: 1em;
width: 550px;
padding: 10px;
}
.alice {
border: 2px solid grey;
border-left-width: 20px;
}
.bob {
border: 2px solid grey;
border-right-width: 20px;
}
.messageleft, .messageright {
margin: 1em;
background-color: grey;
height: 30px;
text-align: center;
color: #fff;
line-height: 30px;
width: 590px;
}
.messageleft .arrow, .messageright .arrow {
border-top: 15px solid #fff;
border-bottom: 15px solid #fff;
width: 0;
height: 0;
}
.messageright .arrow {
float: right;
border-left: 15px solid grey;
}
.messageleft .arrow {
float: left;
border-right: 15px solid grey;
}

194
demo/split-key.html

@ -1,194 +0,0 @@
<!doctype html>
<html>
<head>
<title>Two-party ECDSA signature generation</title>
<link rel="stylesheet" type="text/css" href="demo.css"/>
<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js"></script>
<script type="text/javascript">
jQuery(function ($) {
var worker = new Worker("split-key.js");
worker.onmessage = function (event) {
var data = event.data;
switch (data.cmd) {
case "ff":
$("#"+data.field).val(data.value);
break;
case "log":
if (console && "function" === typeof console.log) {
console.log.apply(console, data.args);
}
break;
}
};
worker.onerror = function (error) {
console.error(error);
};
worker.postMessage("start");
});
</script>
</head>
<body>
<h1>Two-party ECDSA signature generation</h1>
<p><strong>Initialization</strong></p>
<div class="alice">
<p>Alice starts out with her share of the private key d<sub>1</sub></p>
<div>
<label for="d1">d<sub>1</sub>=</label>
<input id="d1" type="text" readonly="readonly"/>
</div>
<p>And a Paillier keypair pk/sk</p>
<div>
<label for="p1_n">n=</label>
<input id="p1_n" type="text" readonly="readonly"/>
</div>
<div>
<label for="p1_g">g=</label>
<input id="p1_g" type="text" readonly="readonly"/>
</div>
<div>
<label for="p1_l">&lambda;=</label>
<input id="p1_l" type="text" readonly="readonly"/>
</div>
<div>
<label for="p1_m">&mu;=</label>
<input id="p1_m" type="text" readonly="readonly"/>
</div>
</div>
<div class="bob">
<p>Bob starts out with his share d<sub>2</sub> of the private key d</p>
<div>
<label for="d2">d<sub>2</sub>=</label>
<input id="d2" type="text" readonly="readonly"/>
</div>
</div>
<p><strong>Protocol</strong></p>
<div class="alice">
<p>First Alice generates her share of the one-time secret k<sub>1</sub></p>
<div>
<label for="k1">k<sub>1</sub>=</label>
<input id="k1" type="text" readonly="readonly"/>
</div>
<p>And its inverse z<sub>1</sub> = (k<sub>1</sub>)<sup>-1</sup> mod n</p>
<div>
<label for="z1">z<sub>1</sub>=</label>
<input id="z1" type="text" readonly="readonly"/>
</div>
<p>She also calculates Q<sub>1</sub> = k<sub>1</sub>G</p>
<div>
<label for="q1">Q<sub>1</sub>=</label>
<input id="q1" type="text" readonly="readonly"/>
</div>
<p>She then encrypts z<sub>1</sub> using Paillier to create &alpha; = E<sub>pk</sub>(z<sub>1</sub>)</p>
<div>
<label for="alpha">&alpha;=</label>
<input id="alpha" type="text" readonly="readonly"/>
</div>
<p>And &beta; = E<sub>pk</sub>(d<sub>1</sub>z<sub>1</sub> mod n)</p>
<div>
<label for="beta">&beta;=</label>
<input id="beta" type="text" readonly="readonly"/>
</div>
<p>And also generates an encrypted blinding factor A = E<sub>pk</sub>(c) for some c &in; [1, n<sub>P</sub>/n<sub>EC</sub>]</p>
<div>
<label for="A">A=</label>
<input id="A" type="text" readonly="readonly"/>
</div>
<p>Alice composes the encrypted signature &sigma;<sub>1</sub> = (&alpha; &times;<sub>pk</sub> e) +<sub>pk</sub> (&beta; &times;<sub>pk</sub> r) +<sub>pk</sub> (A &times;<sub>pk</sub> n)</p>
<div>
<label for="sigma_1">&sigma;<sub>1</sub>=</label>
<input id="sigma_1" type="text" readonly="readonly"/>
</div>
<p>She deterministically rerandomizes it to receive &sigma;<sub>1</sub>' = &sigma;<sub>1</sub>HASH(&sigma;<sub>1</sub>)<sup>n</sub> mod n<sup>2</sup></p>
<div>
<label for="sigma_1n">&sigma;<sub>1</sub>'=</label>
<input id="sigma_1n" type="text" readonly="readonly"/>
</div>
<p>And decrypts &sigma;<sub>1</sub>' to receive s<sub>1</sub></p>
<div>
<label for="s_1">s<sub>1</sub>=</label>
<input id="s_1" type="text" readonly="readonly"/>
</div>
<p>And v', the randomizing factor in &sigma;<sub>1</sub>'</p>
<div>
<label for="v_n">v<sub>'</sub>=</label>
<input id="v_n" type="text" readonly="readonly"/>
</div>
</div>
<div class="messageright"><div class="arrow"></div>
Q<sub>1</sub>, &alpha;, &beta;, message, e, pk, A, s<sub>1</sub>, v'
</div>
<div class="bob">
<p>Bob validates Q<sub>1</sub> by ensuring that
<ol>
<li>Q<sub>1</sub> &ne; O</li>
<li>x<sub>Q<sub>1</sub></sub> and y<sub>Q<sub>1</sub></sub> are in the interval [1,n - 1]</li>
<li>y<sub>Q<sub>1</sub></sub><sup>2</sup> &equiv; x<sub>Q<sub>1</sub></sub><sup>3</sup> + ax<sub>Q<sub>1</sub></sub> + b (mod p)</li>
<li>nQ<sub>1</sub> = O</li>
</ol></p>
<p>And verifies the message to be signed</p>
<p>He then verifies s<sub>1</sub> as a valid signature</p>
<p>Bob also calculates &sigma;<sub>1</sub>' from &alpha;, &beta; and A</p>
<div>
<label for="sigma_1n_b">&sigma;<sub>1</sub>'=</label>
<input id="sigma_1n_b" type="text" readonly="readonly"/>
</div>
<p>And verifies it matches E<sub>pk</sub>(s<sub>1</sub>, v')</p>
<p>He then generates his share k<sub>2</sub> of the private one-time value k</p>
<div>
<label for="k2">k<sub>2</sub>=</label>
<input id="k2" type="text" readonly="readonly"/>
</div>
<p>And its inverse z<sub>2</sub> = (k<sub>2</sub>)<sup>-1</sup> mod n</p>
<div>
<label for="z2">z<sub>2</sub>=</label>
<input id="z2" type="text" readonly="readonly"/>
</div>
<p>He can calculate r = x<sub>Q</sub> where Q(x<sub>Q</sub>, y<sub>Q</sub>) = k<sub>2</sub>Q<sub>1</sub></p>
<div>
<label for="r">r=</label>
<input id="r" type="text" readonly="readonly"/>
</div>
<p>And Q<sub>2</sub> = k<sub>2</sub>G</p>
<div>
<label for="q2">Q<sub>2</sub>=</label>
<input id="q2" type="text" readonly="readonly"/>
</div>
<p>Bob prepares a random value B &in; [1, n<sub>P</sub>/n<sub>EC</sub>] to use for blinding<p>
<div>
<label for="B">B=</label>
<input id="B" type="text" readonly="readonly"/>
</div>
<p>Finally he calculates &sigma; = (&alpha; &times;<sub>pk</sub> z<sub>2</sub>e) +<sub>pk</sub> (&beta; &times;<sub>pk</sub> z<sub>2</sub>d<sub>2</sub>r) +<sub>pk</sub> E<sub>pk</sub>(Bn<sub>EC</sub>)</p>
<div>
<label for="sigma">&sigma;=</label>
<input id="sigma" type="text" readonly="readonly"/>
</div>
</div>
<div class="messageleft"><div class="arrow"></div>
Q<sub>2</sub>, r, &sigma;
</div>
<div class="alice">
<p>Alice confirms Q<sub>2</sub> is a valid public point
<ol>
<li>Q<sub>2</sub> &ne; O</li>
<li>x<sub>Q<sub>2</sub></sub> and y<sub>Q<sub>2</sub></sub> are in the interval [1,n - 1]</li>
<li>y<sub>Q<sub>2</sub></sub><sup>2</sup> &equiv; x<sub>Q<sub>2</sub></sub><sup>3</sup> + ax<sub>Q<sub>2</sub></sub> + b (mod p)</li>
<li>nQ<sub>2</sub> = O</li>
</ol></p>
<p>She now calculates r = x<sub>Q</sub> where Q = k<sub>1</sub>Q<sub>2</sub> and matches it against what Bob claimed</p>
<p>She decrypts &sigma; to receive s = D<sub>sk</sub>(&sigma;)</p>
<div>
<label for="s">s=</label>
<input id="s" type="text" readonly="readonly"/>
</div>
<p>She verifies the signature using r and the combined public key before publishing.</p>
<div>
<label for="result"></label>
<input id="result" type="text" readonly="readonly"/>
</div>
</div>
</body>
</html>

283
demo/split-key.js

@ -1,283 +0,0 @@
var window = this;
importScripts(
"../src/crypto-js/crypto.js",
"../src/crypto-js/sha256.js",
"../src/jsbn/prng4.js",
"../src/jsbn/rng.js",
"../src/jsbn/jsbn.js",
"../src/jsbn/jsbn2.js",
"../src/jsbn/ec.js",
"../src/jsbn/sec.js",
"../src/events/eventemitter.js",
"../src/bitcoin.js",
"../src/util.js",
"../src/base58.js",
"../src/address.js",
"../src/ecdsa.js",
"../src/paillier.js"
);
function hex(value) {
if ("function" === typeof value.getEncoded) {
return Crypto.util.bytesToHex(value.getEncoded());
} else if ("function" === typeof value.toByteArrayUnsigned) {
return Crypto.util.bytesToHex(value.toByteArrayUnsigned());
} else if (Array.isArray(value)) {
return Crypto.util.bytesToHex(value);
}
return value;
};
function ff(field, value) {
value = hex(value);
postMessage({ "cmd": "ff", "field": field, "value": value });
};
function log() {
postMessage({ "cmd": "log", "args": Array.prototype.slice.apply(arguments) });
};
function start() {
var ecparams = getSECCurveByName("secp256k1");
var rng = new SecureRandom();
var G = ecparams.getG();
var n = ecparams.getN();
G.validate();
var Alice = function (pubShare) {
this.d1 = Bitcoin.ECDSA.getBigRandom(n);
ff('d1', this.d1);
this.paillier = Bitcoin.Paillier.generate(n.bitLength()*2+
Math.floor(Math.random()*10));
ff('p1_n', this.paillier.pub.n);
ff('p1_g', this.paillier.pub.g);
ff('p1_l', this.paillier.l);
ff('p1_m', this.paillier.m);
};
var Bob = function () {
this.d2 = Bitcoin.ECDSA.getBigRandom(n);
ff('d2', this.d2);
};
Alice.prototype.getPub = function (P) {
if (this.pub) return this.pub;
P.validate();
return this.pub = P.multiply(this.d1).getEncoded();
};
Alice.prototype.getPubShare = function () {
return G.multiply(this.d1);
};
Bob.prototype.getPubShare = function () {
return G.multiply(this.d2);
};
Alice.prototype.step1 = function (message) {
var hash = Crypto.SHA256(Crypto.SHA256(message, {asBytes: true}), {asBytes: true});
this.e = BigInteger.fromByteArrayUnsigned(hash).mod(n);
this.k1 = Bitcoin.ECDSA.getBigRandom(n);
ff('k1', this.k1);
this.z1 = this.k1.modInverse(n);
ff('z1', this.z1);
var Q_1 = G.multiply(this.k1);
ff('q1', Q_1);
var alpha = this.paillier.encrypt(this.z1);
ff('alpha', alpha);
var beta = this.paillier.encrypt(this.d1.multiply(this.z1).mod(n));
ff('beta', beta);
var r_1 = Q_1.getX().toBigInteger().mod(n);
var A = this.paillier.encrypt(Bitcoin.ECDSA.getBigRandom(this.paillier.n.divide(n)));
ff('A', A);
var s_a = this.paillier.multiply(alpha, this.e);
var s_b = this.paillier.multiply(beta, r_1);
var sigma_1 = this.paillier.addCrypt(this.paillier.addCrypt(s_a, s_b), this.paillier.multiply(A, n));
ff('sigma_1', sigma_1);
var e = Crypto.SHA256(sigma_1.toByteArrayUnsigned(), {asBytes: true});
e = BigInteger.fromByteArrayUnsigned(e);
var sigma_1n = this.paillier.rerandomize(sigma_1, e);
ff('sigma_1n', sigma_1n);
var s_1 = this.paillier.decrypt(sigma_1n);
ff('s_1', s_1);
var v_n = this.paillier.decryptR(sigma_1n, s_1);
ff('v_n', v_n);
return {
Q_1: Q_1,
P_1: this.getPubShare(),
alpha: alpha,
beta: beta,
message: message,
paillier: this.paillier.pub,
A: A,
s_1: s_1,
v_n: v_n
};
};
Bob.prototype.step2 = function (pkg) {
// ... In real life we would check that message is a valid transaction and
// does what we want.
// Throws exception on error
pkg.Q_1.validate();
var hash = Crypto.SHA256(Crypto.SHA256(message, {asBytes: true}), {asBytes: true});
this.e = BigInteger.fromByteArrayUnsigned(hash).mod(n);
this.paillier = pkg.paillier;
this.alpha = pkg.alpha;
this.beta = pkg.beta;
var r_1 = pkg.Q_1.getX().toBigInteger().mod(n);
var testSig = Bitcoin.ECDSA.serializeSig(r_1, pkg.s_1.mod(n));
if (!Bitcoin.ECDSA.verify(hash, testSig, pkg.P_1.getEncoded())) {
throw new Error('Verification of s1 failed.');
}
// Verify that alpha and beta are valid by generating and verifying sigma_1n
var s_a_1 = this.paillier.multiply(this.alpha, this.e);
var s_b_1 = this.paillier.multiply(this.beta, r_1);
var sigma_1 = this.paillier.addCrypt(this.paillier.addCrypt(s_a_1, s_b_1), this.paillier.multiply(pkg.A, n));
var e = Crypto.SHA256(sigma_1.toByteArrayUnsigned(), {asBytes: true});
e = BigInteger.fromByteArrayUnsigned(e);
var sigma_1n = this.paillier.rerandomize(sigma_1, e);
ff('sigma_1n_b', sigma_1n);
var sigma_1_verify = this.paillier.encrypt(pkg.s_1, pkg.v_n);
if (!sigma_1n.equals(sigma_1_verify)) {
throw new Error('Sigma ciphertext did not match expected value.');
}
this.k2 = Bitcoin.ECDSA.getBigRandom(n);
ff('k2', this.k2);
this.z2 = this.k2.modInverse(n);
ff('z2', this.z2);
var Q_2 = G.multiply(this.k2);
ff('q2', Q_2);
var Q = pkg.Q_1.multiply(this.k2);
this.r = Q.getX().toBigInteger().mod(n);
ff('r', this.r);
if (this.r.equals(BigInteger.ZERO)) {
throw new Error('r must not be zero.');
}
var B = Bitcoin.ECDSA.getBigRandom(this.paillier.n.divide(n));
ff('B', B);
var p = this.paillier;
var s_a = p.multiply(this.alpha, this.e.multiply(this.z2));
var s_b = p.multiply(this.beta, this.r.multiply(this.d2).multiply(this.z2));
var sigma = p.add(p.addCrypt(s_a, s_b), B.multiply(n));
ff('sigma', sigma);
return {
Q_2: Q_2,
r: this.r,
sigma: sigma
};
};
Alice.prototype.step3 = function (pkg) {
pkg.Q_2.validate();
var Q = pkg.Q_2.multiply(this.k1);
this.r = Q.getX().toBigInteger().mod(n);
if (!this.r.equals(pkg.r)) {
throw new Error('Could not confirm value for r.');
}
if (this.r.equals(BigInteger.ZERO)) {
throw new Error('r must not be zero.');
}
var s = this.paillier.decrypt(pkg.sigma).mod(n);
ff('s', s);
var sig = Bitcoin.ECDSA.serializeSig(this.r, s);
var hash = this.e.toByteArrayUnsigned();
if (!Bitcoin.ECDSA.verify(hash, sig, this.getPub())) {
throw new Error('Signature failed to verify.');
}
return {
r: this.r,
s: s
};
};
var message = "testmessage";
var bob = new Bob();
var pubShare = bob.getPubShare();
var alice = new Alice(pubShare);
var pub = alice.getPub(pubShare);
var pkg1 = alice.step1(message);
var pkg2 = bob.step2(pkg1);
var pkg3 = alice.step3(pkg2);
var sig = Bitcoin.ECDSA.serializeSig(pkg3.r, pkg3.s);
var kChk = alice.k1.multiply(bob.k2);
var rChk = G.multiply(kChk).getX().toBigInteger();
log("r :", hex(pkg3.r));
log("r/CHK:", hex(rChk));
var hash = Crypto.SHA256(Crypto.SHA256(message, {asBytes: true}), {asBytes: true});
var eChk = BigInteger.fromByteArrayUnsigned(hash).mod(n);
var dChk = alice.d1.multiply(bob.d2);
var sChk = kChk.modInverse(n).multiply(eChk.add(dChk.multiply(rChk))).mod(n);
log("s :", hex(pkg3.s));
log("s/CHK:", hex(sChk));
var sigChk = Bitcoin.ECDSA.serializeSig(rChk, sChk);
log("sig :", hex(sig));
log("sig/CHK:", hex(sigChk));
var ver = Bitcoin.ECDSA.verify(hash, sig, pub);
log("ver :", ver);
log("ver/CHK:", Bitcoin.ECDSA.verify(hash, sigChk, pub));
log("ver/CTL:", Bitcoin.ECDSA.verify(hash, Bitcoin.ECDSA.sign(hash, dChk), pub));
ff("result", ver ? "SIGNATURE VALID" : "SIGNATURE INVALID");
var priv = Bitcoin.ECDSA.getBigRandom(n);
pub = G.multiply(priv).getEncoded();
log("ver/GEN:", Bitcoin.ECDSA.verify(hash, Bitcoin.ECDSA.sign(hash, priv), pub));
};
self.onmessage = function (event) {
try {
start();
} catch(e) {
var stack = e.stack.replace(/^[^\(]+?[\n$]/gm, '')
.replace(/^\s+at\s+/gm, '')
.replace(/^Object.<anonymous>\s*\(/gm, '{anonymous}()@')
.split('\n');
log(e+'\n'+stack);
}
};
Loading…
Cancel
Save