Wei Lu
11 years ago
7 changed files with 267 additions and 299 deletions
@ -1,317 +1,272 @@ |
|||
var assert = require('assert') |
|||
var crypto = require('./crypto') |
|||
var sec = require('./sec') |
|||
var ecparams = sec("secp256k1") |
|||
|
|||
var BigInteger = require('bigi') |
|||
var ECPointFp = require('./ec').ECPointFp |
|||
|
|||
function implShamirsTrick(P, k, Q, l) { |
|||
var m = Math.max(k.bitLength(), l.bitLength()) |
|||
var Z = P.add2D(Q) |
|||
var R = P.curve.getInfinity() |
|||
|
|||
for (var i = m - 1; i >= 0; --i) { |
|||
R = R.twice2D() |
|||
|
|||
R.z = BigInteger.ONE |
|||
|
|||
if (k.testBit(i)) { |
|||
if (l.testBit(i)) { |
|||
R = R.add2D(Z) |
|||
} else { |
|||
R = R.add2D(P) |
|||
} |
|||
} else { |
|||
if (l.testBit(i)) { |
|||
R = R.add2D(Q) |
|||
} |
|||
} |
|||
} |
|||
function deterministicGenerateK(ecparams, hash, D) { |
|||
assert(Buffer.isBuffer(hash), 'Hash must be a Buffer, not ' + hash) |
|||
assert.equal(hash.length, 32, 'Hash must be 256 bit') |
|||
assert(D instanceof BigInteger, 'Private key must be a BigInteger') |
|||
|
|||
var x = D.toBuffer(32) |
|||
var k = new Buffer(32) |
|||
var v = new Buffer(32) |
|||
k.fill(0) |
|||
v.fill(1) |
|||
|
|||
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k) |
|||
v = crypto.HmacSHA256(v, k) |
|||
|
|||
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k) |
|||
v = crypto.HmacSHA256(v, k) |
|||
v = crypto.HmacSHA256(v, k) |
|||
|
|||
return R |
|||
var n = ecparams.getN() |
|||
var kB = BigInteger.fromBuffer(v).mod(n) |
|||
assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value') |
|||
assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value') |
|||
|
|||
return kB |
|||
} |
|||
|
|||
var ecdsa = { |
|||
deterministicGenerateK: function(hash, D) { |
|||
assert(Buffer.isBuffer(hash), 'Hash must be a Buffer') |
|||
assert.equal(hash.length, 32, 'Hash must be 256 bit') |
|||
assert(D instanceof BigInteger, 'Private key must be a BigInteger') |
|||
function sign(ecparams, hash, D) { |
|||
var k = deterministicGenerateK(ecparams, hash, D) |
|||
|
|||
var x = D.toBuffer(32) |
|||
var k = new Buffer(32) |
|||
var v = new Buffer(32) |
|||
k.fill(0) |
|||
v.fill(1) |
|||
var n = ecparams.getN() |
|||
var G = ecparams.getG() |
|||
var Q = G.multiply(k) |
|||
var e = BigInteger.fromBuffer(hash) |
|||
|
|||
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k) |
|||
v = crypto.HmacSHA256(v, k) |
|||
var r = Q.getX().toBigInteger().mod(n) |
|||
assert.notEqual(r.signum(), 0, 'Invalid R value') |
|||
|
|||
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k) |
|||
v = crypto.HmacSHA256(v, k) |
|||
v = crypto.HmacSHA256(v, k) |
|||
var s = k.modInverse(n).multiply(e.add(D.multiply(r))).mod(n) |
|||
assert.notEqual(s.signum(), 0, 'Invalid S value') |
|||
|
|||
var n = ecparams.getN() |
|||
var kB = BigInteger.fromBuffer(v).mod(n) |
|||
assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value') |
|||
assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value') |
|||
var N_OVER_TWO = n.shiftRight(1) |
|||
|
|||
return kB |
|||
}, |
|||
// enforce low S values, see bip62: 'low s values in signatures'
|
|||
if (s.compareTo(N_OVER_TWO) > 0) { |
|||
s = n.subtract(s) |
|||
} |
|||
|
|||
sign: function (hash, D) { |
|||
var k = ecdsa.deterministicGenerateK(hash, D) |
|||
return {r: r, s: s} |
|||
} |
|||
|
|||
var n = ecparams.getN() |
|||
var G = ecparams.getG() |
|||
var Q = G.multiply(k) |
|||
var e = BigInteger.fromBuffer(hash) |
|||
function verify(ecparams, hash, r, s, Q) { |
|||
var e = BigInteger.fromBuffer(hash) |
|||
|
|||
var r = Q.getX().toBigInteger().mod(n) |
|||
assert.notEqual(r.signum(), 0, 'Invalid R value') |
|||
return verifyRaw(ecparams, e, r, s, Q) |
|||
} |
|||
|
|||
var s = k.modInverse(n).multiply(e.add(D.multiply(r))).mod(n) |
|||
assert.notEqual(s.signum(), 0, 'Invalid S value') |
|||
function verifyRaw(ecparams, e, r, s, Q) { |
|||
var n = ecparams.getN() |
|||
var G = ecparams.getG() |
|||
|
|||
var N_OVER_TWO = n.shiftRight(1) |
|||
if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) { |
|||
return false |
|||
} |
|||
|
|||
// enforce low S values, see bip62: 'low s values in signatures'
|
|||
if (s.compareTo(N_OVER_TWO) > 0) { |
|||
s = n.subtract(s) |
|||
} |
|||
if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) { |
|||
return false |
|||
} |
|||
|
|||
return ecdsa.serializeSig(r, s) |
|||
}, |
|||
|
|||
verify: function (hash, sig, pubkey) { |
|||
var r,s |
|||
if (Array.isArray(sig) || Buffer.isBuffer(sig)) { |
|||
var obj = ecdsa.parseSig(sig) |
|||
r = obj.r |
|||
s = obj.s |
|||
} else if ("object" === typeof sig && sig.r && sig.s) { |
|||
r = sig.r |
|||
s = sig.s |
|||
} else { |
|||
throw new Error("Invalid value for signature") |
|||
} |
|||
var c = s.modInverse(n) |
|||
var u1 = e.multiply(c).mod(n) |
|||
var u2 = r.multiply(c).mod(n) |
|||
|
|||
var Q |
|||
if (pubkey instanceof ECPointFp) { |
|||
Q = pubkey |
|||
} else if (Array.isArray(pubkey) || Buffer.isBuffer(pubkey)) { |
|||
Q = ECPointFp.decodeFrom(ecparams.getCurve(), pubkey) |
|||
} else { |
|||
throw new Error("Invalid format for pubkey value, must be byte array or ECPointFp") |
|||
} |
|||
var e = BigInteger.fromBuffer(hash) |
|||
var point = G.multiplyTwo(u1, Q, u2) |
|||
var v = point.getX().toBigInteger().mod(n) |
|||
|
|||
return ecdsa.verifyRaw(e, r, s, Q) |
|||
}, |
|||
return v.equals(r) |
|||
} |
|||
|
|||
verifyRaw: function (e, r, s, Q) { |
|||
var n = ecparams.getN() |
|||
var G = ecparams.getG() |
|||
/** |
|||
* Serialize a signature into DER format. |
|||
* |
|||
* Takes two BigIntegers representing r and s and returns a byte array. |
|||
*/ |
|||
function serializeSig(r, s) { |
|||
var rBa = r.toByteArraySigned() |
|||
var sBa = s.toByteArraySigned() |
|||
|
|||
if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) { |
|||
return false |
|||
} |
|||
var sequence = [] |
|||
sequence.push(0x02); // INTEGER
|
|||
sequence.push(rBa.length) |
|||
sequence = sequence.concat(rBa) |
|||
|
|||
if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) { |
|||
return false |
|||
} |
|||
sequence.push(0x02); // INTEGER
|
|||
sequence.push(sBa.length) |
|||
sequence = sequence.concat(sBa) |
|||
|
|||
var c = s.modInverse(n) |
|||
var u1 = e.multiply(c).mod(n) |
|||
var u2 = r.multiply(c).mod(n) |
|||
|
|||
// TODO(!!!): For some reason Shamir's trick isn't working with
|
|||
// signed message verification!? Probably an implementation
|
|||
// error!
|
|||
//var point = implShamirsTrick(G, u1, Q, u2)
|
|||
var point = G.multiply(u1).add(Q.multiply(u2)) |
|||
|
|||
var v = point.getX().toBigInteger().mod(n) |
|||
|
|||
return v.equals(r) |
|||
}, |
|||
|
|||
/** |
|||
* Serialize a signature into DER format. |
|||
* |
|||
* Takes two BigIntegers representing r and s and returns a byte array. |
|||
*/ |
|||
serializeSig: function (r, s) { |
|||
var rBa = r.toByteArraySigned() |
|||
var sBa = s.toByteArraySigned() |
|||
|
|||
var sequence = [] |
|||
sequence.push(0x02); // INTEGER
|
|||
sequence.push(rBa.length) |
|||
sequence = sequence.concat(rBa) |
|||
|
|||
sequence.push(0x02); // INTEGER
|
|||
sequence.push(sBa.length) |
|||
sequence = sequence.concat(sBa) |
|||
|
|||
sequence.unshift(sequence.length) |
|||
sequence.unshift(0x30); // SEQUENCE
|
|||
|
|||
return sequence |
|||
}, |
|||
|
|||
/** |
|||
* Parses a buffer containing a DER-encoded signature. |
|||
* |
|||
* This function will return an object of the form: |
|||
* |
|||
* { |
|||
* r: BigInteger, |
|||
* s: BigInteger |
|||
* } |
|||
*/ |
|||
parseSig: function (buffer) { |
|||
if (Array.isArray(buffer)) buffer = new Buffer(buffer) // FIXME: transitionary
|
|||
|
|||
assert.equal(buffer.readUInt8(0), 0x30, 'Not a DER sequence') |
|||
assert.equal(buffer.readUInt8(1), buffer.length - 2, 'Invalid sequence length') |
|||
|
|||
assert.equal(buffer.readUInt8(2), 0x02, 'Expected DER integer') |
|||
var rLen = buffer.readUInt8(3) |
|||
var rB = buffer.slice(4, 4 + rLen) |
|||
|
|||
var offset = 4 + rLen |
|||
assert.equal(buffer.readUInt8(offset), 0x02, 'Expected a 2nd DER integer') |
|||
var sLen = buffer.readUInt8(1 + offset) |
|||
var sB = buffer.slice(2 + offset) |
|||
|
|||
return { |
|||
r: BigInteger.fromByteArraySigned(rB), |
|||
s: BigInteger.fromByteArraySigned(sB) |
|||
} |
|||
}, |
|||
sequence.unshift(sequence.length) |
|||
sequence.unshift(0x30); // SEQUENCE
|
|||
|
|||
serializeSigCompact: function(r, s, i, compressed) { |
|||
if (compressed) { |
|||
i += 4 |
|||
} |
|||
return sequence |
|||
} |
|||
|
|||
i += 27 |
|||
/** |
|||
* Parses a buffer containing a DER-encoded signature. |
|||
* |
|||
* This function will return an object of the form: |
|||
* |
|||
* { |
|||
* r: BigInteger, |
|||
* s: BigInteger |
|||
* } |
|||
*/ |
|||
function parseSig(buffer) { |
|||
assert.equal(buffer.readUInt8(0), 0x30, 'Not a DER sequence') |
|||
assert.equal(buffer.readUInt8(1), buffer.length - 2, 'Invalid sequence length') |
|||
|
|||
assert.equal(buffer.readUInt8(2), 0x02, 'Expected DER integer') |
|||
var rLen = buffer.readUInt8(3) |
|||
var rB = buffer.slice(4, 4 + rLen) |
|||
|
|||
var offset = 4 + rLen |
|||
assert.equal(buffer.readUInt8(offset), 0x02, 'Expected a 2nd DER integer') |
|||
var sLen = buffer.readUInt8(1 + offset) |
|||
var sB = buffer.slice(2 + offset) |
|||
|
|||
return { |
|||
r: BigInteger.fromByteArraySigned(rB), |
|||
s: BigInteger.fromByteArraySigned(sB) |
|||
} |
|||
} |
|||
|
|||
var buffer = new Buffer(65) |
|||
buffer.writeUInt8(i, 0) |
|||
r.toBuffer(32).copy(buffer, 1) |
|||
s.toBuffer(32).copy(buffer, 33) |
|||
function serializeSigCompact(r, s, i, compressed) { |
|||
if (compressed) { |
|||
i += 4 |
|||
} |
|||
|
|||
return buffer |
|||
}, |
|||
i += 27 |
|||
|
|||
parseSigCompact: function (buffer) { |
|||
assert.equal(buffer.length, 65, 'Invalid signature length') |
|||
var i = buffer.readUInt8(0) - 27 |
|||
var buffer = new Buffer(65) |
|||
buffer.writeUInt8(i, 0) |
|||
r.toBuffer(32).copy(buffer, 1) |
|||
s.toBuffer(32).copy(buffer, 33) |
|||
|
|||
// At most 3 bits
|
|||
assert.equal(i, i & 7, 'Invalid signature type') |
|||
var compressed = !!(i & 4) |
|||
return buffer |
|||
} |
|||
|
|||
// Recovery param only
|
|||
i = i & 3 |
|||
function parseSigCompact(buffer) { |
|||
assert.equal(buffer.length, 65, 'Invalid signature length') |
|||
var i = buffer.readUInt8(0) - 27 |
|||
|
|||
var r = BigInteger.fromBuffer(buffer.slice(1, 33)) |
|||
var s = BigInteger.fromBuffer(buffer.slice(33)) |
|||
// At most 3 bits
|
|||
assert.equal(i, i & 7, 'Invalid signature type') |
|||
var compressed = !!(i & 4) |
|||
|
|||
return { |
|||
r: r, |
|||
s: s, |
|||
i: i, |
|||
compressed: compressed |
|||
} |
|||
}, |
|||
|
|||
/** |
|||
* Recover a public key from a signature. |
|||
* |
|||
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public |
|||
* Key Recovery Operation". |
|||
* |
|||
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
|||
*/ |
|||
recoverPubKey: function (r, s, hash, i) { |
|||
assert.strictEqual(i & 3, i, 'The recovery param is more than two bits') |
|||
|
|||
// A set LSB signifies that the y-coordinate is odd
|
|||
// By reduction, the y-coordinate is even if it is clear
|
|||
var isYEven = !(i & 1) |
|||
|
|||
// The more significant bit specifies whether we should use the
|
|||
// first or second candidate key.
|
|||
var isSecondKey = i >> 1 |
|||
|
|||
var n = ecparams.getN() |
|||
var G = ecparams.getG() |
|||
var curve = ecparams.getCurve() |
|||
var p = curve.getQ() |
|||
var a = curve.getA().toBigInteger() |
|||
var b = curve.getB().toBigInteger() |
|||
|
|||
// We precalculate (p + 1) / 4 where p is the field order
|
|||
if (!curve.P_OVER_FOUR) { |
|||
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2) |
|||
} |
|||
// Recovery param only
|
|||
i = i & 3 |
|||
|
|||
// 1.1 Compute x
|
|||
var x = isSecondKey ? r.add(n) : r |
|||
var r = BigInteger.fromBuffer(buffer.slice(1, 33)) |
|||
var s = BigInteger.fromBuffer(buffer.slice(33)) |
|||
|
|||
// 1.3 Convert x to point
|
|||
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p) |
|||
var beta = alpha.modPow(curve.P_OVER_FOUR, p) |
|||
return { |
|||
r: r, |
|||
s: s, |
|||
i: i, |
|||
compressed: compressed |
|||
} |
|||
} |
|||
|
|||
// If beta is even, but y isn't, or vice versa, then convert it,
|
|||
// otherwise we're done and y == beta.
|
|||
var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta |
|||
/** |
|||
* Recover a public key from a signature. |
|||
* |
|||
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public |
|||
* Key Recovery Operation". |
|||
* |
|||
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
|||
*/ |
|||
function recoverPubKey(ecparams, e, r, s, i) { |
|||
assert.strictEqual(i & 3, i, 'The recovery param is more than two bits') |
|||
|
|||
// A set LSB signifies that the y-coordinate is odd
|
|||
// By reduction, the y-coordinate is even if it is clear
|
|||
var isYEven = !(i & 1) |
|||
|
|||
// The more significant bit specifies whether we should use the
|
|||
// first or second candidate key.
|
|||
var isSecondKey = i >> 1 |
|||
|
|||
var n = ecparams.getN() |
|||
var G = ecparams.getG() |
|||
var curve = ecparams.getCurve() |
|||
var p = curve.getQ() |
|||
var a = curve.getA().toBigInteger() |
|||
var b = curve.getB().toBigInteger() |
|||
|
|||
// We precalculate (p + 1) / 4 where p is the field order
|
|||
if (!curve.P_OVER_FOUR) { |
|||
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2) |
|||
} |
|||
|
|||
// 1.4 Check that nR isn't at infinity
|
|||
var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)) |
|||
R.validate() |
|||
// 1.1 Compute x
|
|||
var x = isSecondKey ? r.add(n) : r |
|||
|
|||
// 1.5 Compute e from M
|
|||
var e = BigInteger.fromBuffer(hash) |
|||
var eNeg = BigInteger.ZERO.subtract(e).mod(n) |
|||
// 1.3 Convert x to point
|
|||
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p) |
|||
var beta = alpha.modPow(curve.P_OVER_FOUR, p) |
|||
|
|||
// 1.6 Compute Q = r^-1 (sR - eG)
|
|||
var rInv = r.modInverse(n) |
|||
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv) |
|||
// If beta is even, but y isn't, or vice versa, then convert it,
|
|||
// otherwise we're done and y == beta.
|
|||
var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta |
|||
|
|||
Q.validate() |
|||
if (!ecdsa.verifyRaw(e, r, s, Q)) { |
|||
throw new Error("Pubkey recovery unsuccessful") |
|||
} |
|||
// 1.4 Check that nR isn't at infinity
|
|||
var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)) |
|||
R.validate() |
|||
|
|||
return Q |
|||
}, |
|||
|
|||
/** |
|||
* Calculate pubkey extraction parameter. |
|||
* |
|||
* When extracting a pubkey from a signature, we have to |
|||
* distinguish four different cases. Rather than putting this |
|||
* burden on the verifier, Bitcoin includes a 2-bit value with the |
|||
* signature. |
|||
* |
|||
* This function simply tries all four cases and returns the value |
|||
* that resulted in a successful pubkey recovery. |
|||
*/ |
|||
calcPubKeyRecoveryParam: function (origPubKey, r, s, hash) { |
|||
for (var i = 0; i < 4; i++) { |
|||
var pubKey = ecdsa.recoverPubKey(r, s, hash, i) |
|||
|
|||
if (pubKey.equals(origPubKey)) { |
|||
return i |
|||
} |
|||
} |
|||
// 1.5 Compute -e from e
|
|||
var eNeg = e.negate().mod(n) |
|||
|
|||
// 1.6 Compute Q = r^-1 (sR - eG)
|
|||
// Q = r^-1 (sR + -eG)
|
|||
var rInv = r.modInverse(n) |
|||
|
|||
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv) |
|||
Q.validate() |
|||
|
|||
if (!verifyRaw(ecparams, e, r, s, Q)) { |
|||
throw new Error("Pubkey recovery unsuccessful") |
|||
} |
|||
|
|||
throw new Error("Unable to find valid recovery factor") |
|||
return Q |
|||
} |
|||
|
|||
/** |
|||
* Calculate pubkey extraction parameter. |
|||
* |
|||
* When extracting a pubkey from a signature, we have to |
|||
* distinguish four different cases. Rather than putting this |
|||
* burden on the verifier, Bitcoin includes a 2-bit value with the |
|||
* signature. |
|||
* |
|||
* This function simply tries all four cases and returns the value |
|||
* that resulted in a successful pubkey recovery. |
|||
*/ |
|||
function calcPubKeyRecoveryParam(ecparams, e, r, s, Q) { |
|||
for (var i = 0; i < 4; i++) { |
|||
var Qprime = recoverPubKey(ecparams, e, r, s, i) |
|||
|
|||
if (Qprime.equals(Q)) { |
|||
return i |
|||
} |
|||
} |
|||
|
|||
throw new Error('Unable to find valid recovery factor') |
|||
} |
|||
|
|||
module.exports = ecdsa |
|||
module.exports = { |
|||
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam, |
|||
deterministicGenerateK: deterministicGenerateK, |
|||
recoverPubKey: recoverPubKey, |
|||
sign: sign, |
|||
verify: verify, |
|||
verifyRaw: verifyRaw, |
|||
serializeSig: serializeSig, |
|||
parseSig: parseSig, |
|||
serializeSigCompact: serializeSigCompact, |
|||
parseSigCompact: parseSigCompact |
|||
} |
|||
|
Loading…
Reference in new issue