Browse Source

Merge pull request #184 from dcousens/ecclean

ECDSA cleanup
hk-custom-address
Wei Lu 11 years ago
parent
commit
c6bc0ebdcb
  1. 493
      src/ecdsa.js
  2. 2
      src/eckey.js
  3. 4
      src/ecpubkey.js
  4. 12
      src/message.js
  5. 22
      src/transaction.js
  6. 29
      test/ecdsa.js
  7. 4
      test/transaction.js

493
src/ecdsa.js

@ -1,317 +1,272 @@
var assert = require('assert')
var crypto = require('./crypto')
var sec = require('./sec')
var ecparams = sec("secp256k1")
var BigInteger = require('bigi')
var ECPointFp = require('./ec').ECPointFp
function implShamirsTrick(P, k, Q, l) {
var m = Math.max(k.bitLength(), l.bitLength())
var Z = P.add2D(Q)
var R = P.curve.getInfinity()
for (var i = m - 1; i >= 0; --i) {
R = R.twice2D()
R.z = BigInteger.ONE
if (k.testBit(i)) {
if (l.testBit(i)) {
R = R.add2D(Z)
} else {
R = R.add2D(P)
}
} else {
if (l.testBit(i)) {
R = R.add2D(Q)
}
}
}
function deterministicGenerateK(ecparams, hash, D) {
assert(Buffer.isBuffer(hash), 'Hash must be a Buffer, not ' + hash)
assert.equal(hash.length, 32, 'Hash must be 256 bit')
assert(D instanceof BigInteger, 'Private key must be a BigInteger')
var x = D.toBuffer(32)
var k = new Buffer(32)
var v = new Buffer(32)
k.fill(0)
v.fill(1)
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k)
v = crypto.HmacSHA256(v, k)
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k)
v = crypto.HmacSHA256(v, k)
v = crypto.HmacSHA256(v, k)
return R
var n = ecparams.getN()
var kB = BigInteger.fromBuffer(v).mod(n)
assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value')
assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value')
return kB
}
var ecdsa = {
deterministicGenerateK: function(hash, D) {
assert(Buffer.isBuffer(hash), 'Hash must be a Buffer')
assert.equal(hash.length, 32, 'Hash must be 256 bit')
assert(D instanceof BigInteger, 'Private key must be a BigInteger')
function sign(ecparams, hash, D) {
var k = deterministicGenerateK(ecparams, hash, D)
var x = D.toBuffer(32)
var k = new Buffer(32)
var v = new Buffer(32)
k.fill(0)
v.fill(1)
var n = ecparams.getN()
var G = ecparams.getG()
var Q = G.multiply(k)
var e = BigInteger.fromBuffer(hash)
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k)
v = crypto.HmacSHA256(v, k)
var r = Q.getX().toBigInteger().mod(n)
assert.notEqual(r.signum(), 0, 'Invalid R value')
k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k)
v = crypto.HmacSHA256(v, k)
v = crypto.HmacSHA256(v, k)
var s = k.modInverse(n).multiply(e.add(D.multiply(r))).mod(n)
assert.notEqual(s.signum(), 0, 'Invalid S value')
var n = ecparams.getN()
var kB = BigInteger.fromBuffer(v).mod(n)
assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value')
assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value')
var N_OVER_TWO = n.shiftRight(1)
return kB
},
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
sign: function (hash, D) {
var k = ecdsa.deterministicGenerateK(hash, D)
return {r: r, s: s}
}
var n = ecparams.getN()
var G = ecparams.getG()
var Q = G.multiply(k)
var e = BigInteger.fromBuffer(hash)
function verify(ecparams, hash, r, s, Q) {
var e = BigInteger.fromBuffer(hash)
var r = Q.getX().toBigInteger().mod(n)
assert.notEqual(r.signum(), 0, 'Invalid R value')
return verifyRaw(ecparams, e, r, s, Q)
}
var s = k.modInverse(n).multiply(e.add(D.multiply(r))).mod(n)
assert.notEqual(s.signum(), 0, 'Invalid S value')
function verifyRaw(ecparams, e, r, s, Q) {
var n = ecparams.getN()
var G = ecparams.getG()
var N_OVER_TWO = n.shiftRight(1)
if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) {
return false
}
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s)
}
if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) {
return false
}
return ecdsa.serializeSig(r, s)
},
verify: function (hash, sig, pubkey) {
var r,s
if (Array.isArray(sig) || Buffer.isBuffer(sig)) {
var obj = ecdsa.parseSig(sig)
r = obj.r
s = obj.s
} else if ("object" === typeof sig && sig.r && sig.s) {
r = sig.r
s = sig.s
} else {
throw new Error("Invalid value for signature")
}
var c = s.modInverse(n)
var u1 = e.multiply(c).mod(n)
var u2 = r.multiply(c).mod(n)
var Q
if (pubkey instanceof ECPointFp) {
Q = pubkey
} else if (Array.isArray(pubkey) || Buffer.isBuffer(pubkey)) {
Q = ECPointFp.decodeFrom(ecparams.getCurve(), pubkey)
} else {
throw new Error("Invalid format for pubkey value, must be byte array or ECPointFp")
}
var e = BigInteger.fromBuffer(hash)
var point = G.multiplyTwo(u1, Q, u2)
var v = point.getX().toBigInteger().mod(n)
return ecdsa.verifyRaw(e, r, s, Q)
},
return v.equals(r)
}
verifyRaw: function (e, r, s, Q) {
var n = ecparams.getN()
var G = ecparams.getG()
/**
* Serialize a signature into DER format.
*
* Takes two BigIntegers representing r and s and returns a byte array.
*/
function serializeSig(r, s) {
var rBa = r.toByteArraySigned()
var sBa = s.toByteArraySigned()
if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) {
return false
}
var sequence = []
sequence.push(0x02); // INTEGER
sequence.push(rBa.length)
sequence = sequence.concat(rBa)
if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) {
return false
}
sequence.push(0x02); // INTEGER
sequence.push(sBa.length)
sequence = sequence.concat(sBa)
var c = s.modInverse(n)
var u1 = e.multiply(c).mod(n)
var u2 = r.multiply(c).mod(n)
// TODO(!!!): For some reason Shamir's trick isn't working with
// signed message verification!? Probably an implementation
// error!
//var point = implShamirsTrick(G, u1, Q, u2)
var point = G.multiply(u1).add(Q.multiply(u2))
var v = point.getX().toBigInteger().mod(n)
return v.equals(r)
},
/**
* Serialize a signature into DER format.
*
* Takes two BigIntegers representing r and s and returns a byte array.
*/
serializeSig: function (r, s) {
var rBa = r.toByteArraySigned()
var sBa = s.toByteArraySigned()
var sequence = []
sequence.push(0x02); // INTEGER
sequence.push(rBa.length)
sequence = sequence.concat(rBa)
sequence.push(0x02); // INTEGER
sequence.push(sBa.length)
sequence = sequence.concat(sBa)
sequence.unshift(sequence.length)
sequence.unshift(0x30); // SEQUENCE
return sequence
},
/**
* Parses a buffer containing a DER-encoded signature.
*
* This function will return an object of the form:
*
* {
* r: BigInteger,
* s: BigInteger
* }
*/
parseSig: function (buffer) {
if (Array.isArray(buffer)) buffer = new Buffer(buffer) // FIXME: transitionary
assert.equal(buffer.readUInt8(0), 0x30, 'Not a DER sequence')
assert.equal(buffer.readUInt8(1), buffer.length - 2, 'Invalid sequence length')
assert.equal(buffer.readUInt8(2), 0x02, 'Expected DER integer')
var rLen = buffer.readUInt8(3)
var rB = buffer.slice(4, 4 + rLen)
var offset = 4 + rLen
assert.equal(buffer.readUInt8(offset), 0x02, 'Expected a 2nd DER integer')
var sLen = buffer.readUInt8(1 + offset)
var sB = buffer.slice(2 + offset)
return {
r: BigInteger.fromByteArraySigned(rB),
s: BigInteger.fromByteArraySigned(sB)
}
},
sequence.unshift(sequence.length)
sequence.unshift(0x30); // SEQUENCE
serializeSigCompact: function(r, s, i, compressed) {
if (compressed) {
i += 4
}
return sequence
}
i += 27
/**
* Parses a buffer containing a DER-encoded signature.
*
* This function will return an object of the form:
*
* {
* r: BigInteger,
* s: BigInteger
* }
*/
function parseSig(buffer) {
assert.equal(buffer.readUInt8(0), 0x30, 'Not a DER sequence')
assert.equal(buffer.readUInt8(1), buffer.length - 2, 'Invalid sequence length')
assert.equal(buffer.readUInt8(2), 0x02, 'Expected DER integer')
var rLen = buffer.readUInt8(3)
var rB = buffer.slice(4, 4 + rLen)
var offset = 4 + rLen
assert.equal(buffer.readUInt8(offset), 0x02, 'Expected a 2nd DER integer')
var sLen = buffer.readUInt8(1 + offset)
var sB = buffer.slice(2 + offset)
return {
r: BigInteger.fromByteArraySigned(rB),
s: BigInteger.fromByteArraySigned(sB)
}
}
var buffer = new Buffer(65)
buffer.writeUInt8(i, 0)
r.toBuffer(32).copy(buffer, 1)
s.toBuffer(32).copy(buffer, 33)
function serializeSigCompact(r, s, i, compressed) {
if (compressed) {
i += 4
}
return buffer
},
i += 27
parseSigCompact: function (buffer) {
assert.equal(buffer.length, 65, 'Invalid signature length')
var i = buffer.readUInt8(0) - 27
var buffer = new Buffer(65)
buffer.writeUInt8(i, 0)
r.toBuffer(32).copy(buffer, 1)
s.toBuffer(32).copy(buffer, 33)
// At most 3 bits
assert.equal(i, i & 7, 'Invalid signature type')
var compressed = !!(i & 4)
return buffer
}
// Recovery param only
i = i & 3
function parseSigCompact(buffer) {
assert.equal(buffer.length, 65, 'Invalid signature length')
var i = buffer.readUInt8(0) - 27
var r = BigInteger.fromBuffer(buffer.slice(1, 33))
var s = BigInteger.fromBuffer(buffer.slice(33))
// At most 3 bits
assert.equal(i, i & 7, 'Invalid signature type')
var compressed = !!(i & 4)
return {
r: r,
s: s,
i: i,
compressed: compressed
}
},
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
recoverPubKey: function (r, s, hash, i) {
assert.strictEqual(i & 3, i, 'The recovery param is more than two bits')
// A set LSB signifies that the y-coordinate is odd
// By reduction, the y-coordinate is even if it is clear
var isYEven = !(i & 1)
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1
var n = ecparams.getN()
var G = ecparams.getG()
var curve = ecparams.getCurve()
var p = curve.getQ()
var a = curve.getA().toBigInteger()
var b = curve.getB().toBigInteger()
// We precalculate (p + 1) / 4 where p is the field order
if (!curve.P_OVER_FOUR) {
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2)
}
// Recovery param only
i = i & 3
// 1.1 Compute x
var x = isSecondKey ? r.add(n) : r
var r = BigInteger.fromBuffer(buffer.slice(1, 33))
var s = BigInteger.fromBuffer(buffer.slice(33))
// 1.3 Convert x to point
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p)
var beta = alpha.modPow(curve.P_OVER_FOUR, p)
return {
r: r,
s: s,
i: i,
compressed: compressed
}
}
// If beta is even, but y isn't, or vice versa, then convert it,
// otherwise we're done and y == beta.
var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
function recoverPubKey(ecparams, e, r, s, i) {
assert.strictEqual(i & 3, i, 'The recovery param is more than two bits')
// A set LSB signifies that the y-coordinate is odd
// By reduction, the y-coordinate is even if it is clear
var isYEven = !(i & 1)
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1
var n = ecparams.getN()
var G = ecparams.getG()
var curve = ecparams.getCurve()
var p = curve.getQ()
var a = curve.getA().toBigInteger()
var b = curve.getB().toBigInteger()
// We precalculate (p + 1) / 4 where p is the field order
if (!curve.P_OVER_FOUR) {
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2)
}
// 1.4 Check that nR isn't at infinity
var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y))
R.validate()
// 1.1 Compute x
var x = isSecondKey ? r.add(n) : r
// 1.5 Compute e from M
var e = BigInteger.fromBuffer(hash)
var eNeg = BigInteger.ZERO.subtract(e).mod(n)
// 1.3 Convert x to point
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p)
var beta = alpha.modPow(curve.P_OVER_FOUR, p)
// 1.6 Compute Q = r^-1 (sR - eG)
var rInv = r.modInverse(n)
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv)
// If beta is even, but y isn't, or vice versa, then convert it,
// otherwise we're done and y == beta.
var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta
Q.validate()
if (!ecdsa.verifyRaw(e, r, s, Q)) {
throw new Error("Pubkey recovery unsuccessful")
}
// 1.4 Check that nR isn't at infinity
var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y))
R.validate()
return Q
},
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
calcPubKeyRecoveryParam: function (origPubKey, r, s, hash) {
for (var i = 0; i < 4; i++) {
var pubKey = ecdsa.recoverPubKey(r, s, hash, i)
if (pubKey.equals(origPubKey)) {
return i
}
}
// 1.5 Compute -e from e
var eNeg = e.negate().mod(n)
// 1.6 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
var rInv = r.modInverse(n)
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv)
Q.validate()
if (!verifyRaw(ecparams, e, r, s, Q)) {
throw new Error("Pubkey recovery unsuccessful")
}
throw new Error("Unable to find valid recovery factor")
return Q
}
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam(ecparams, e, r, s, Q) {
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(ecparams, e, r, s, i)
if (Qprime.equals(Q)) {
return i
}
}
throw new Error('Unable to find valid recovery factor')
}
module.exports = ecdsa
module.exports = {
calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
deterministicGenerateK: deterministicGenerateK,
recoverPubKey: recoverPubKey,
sign: sign,
verify: verify,
verifyRaw: verifyRaw,
serializeSig: serializeSig,
parseSig: parseSig,
serializeSigCompact: serializeSigCompact,
parseSigCompact: parseSigCompact
}

2
src/eckey.js

@ -63,7 +63,7 @@ ECKey.prototype.toWIF = function(version) {
// Operations
ECKey.prototype.sign = function(hash) {
return ecdsa.sign(hash, this.D)
return ecdsa.sign(ecparams, hash, this.D)
}
module.exports = ECKey

4
src/ecpubkey.js

@ -36,8 +36,8 @@ ECPubKey.prototype.getAddress = function(version) {
return new Address(crypto.hash160(this.toBuffer()), version)
}
ECPubKey.prototype.verify = function(hash, sig) {
return ecdsa.verify(hash, sig, this.Q)
ECPubKey.prototype.verify = function(hash, signature) {
return ecdsa.verify(ecparams, hash, signature.r, signature.s, this.Q)
}
// Export functions

12
src/message.js

@ -1,5 +1,6 @@
/// Implements Bitcoin's feature for signing arbitrary messages.
var Address = require('./address')
var BigInteger = require('bigi')
var bufferutils = require('./bufferutils')
var crypto = require('./crypto')
var ecdsa = require('./ecdsa')
@ -8,6 +9,9 @@ var networks = require('./networks')
var Address = require('./address')
var ECPubKey = require('./ecpubkey')
var sec = require('./sec')
var ecparams = sec('secp256k1')
function magicHash(message, network) {
var magicPrefix = new Buffer(network.magicPrefix)
var messageBuffer = new Buffer(message)
@ -24,8 +28,9 @@ function sign(key, message, network) {
network = network || networks.bitcoin
var hash = magicHash(message, network)
var sig = ecdsa.parseSig(key.sign(hash))
var i = ecdsa.calcPubKeyRecoveryParam(key.pub.Q, sig.r, sig.s, hash)
var sig = key.sign(hash)
var e = BigInteger.fromBuffer(hash)
var i = ecdsa.calcPubKeyRecoveryParam(ecparams, e, sig.r, sig.s, key.pub.Q)
return ecdsa.serializeSigCompact(sig.r, sig.s, i, key.pub.compressed)
}
@ -40,7 +45,8 @@ function verify(address, compactSig, message, network) {
var hash = magicHash(message, network)
var sig = ecdsa.parseSigCompact(compactSig)
var Q = ecdsa.recoverPubKey(sig.r, sig.s, hash, sig.i)
var e = BigInteger.fromBuffer(hash)
var Q = ecdsa.recoverPubKey(ecparams, e, sig.r, sig.s, sig.i)
var pubKey = new ECPubKey(Q, sig.compressed)
return pubKey.getAddress(address.version).toString() === address.toString()

22
src/transaction.js

@ -364,27 +364,35 @@ Transaction.prototype.sign = function(index, key, type) {
this.setScriptSig(index, scriptSig)
}
Transaction.prototype.signScriptSig = function(index, script, key, type) {
Transaction.prototype.signScriptSig = function(index, scriptPubKey, key, type) {
type = type || SIGHASH_ALL
assert((index >= 0), 'Invalid vin index')
assert(script instanceof Script, 'Invalid Script object')
assert(scriptPubKey instanceof Script, 'Invalid Script object')
assert(key instanceof ECKey, 'Invalid private key')
// assert.equal(type & 0x7F, type, 'Invalid type') // TODO
var hash = this.hashForSignature(script, index, type)
return key.sign(hash).concat([type])
var hash = this.hashForSignature(scriptPubKey, index, type)
var sig = key.sign(hash)
var DERsig = ecdsa.serializeSig(sig.r, sig.s)
return Buffer.concat([
new Buffer(DERsig),
new Buffer([type])
])
}
Transaction.prototype.setScriptSig = function(index, script) {
this.ins[index].script = script
}
Transaction.prototype.validateSig = function(index, script, pub, sig) {
var type = sig[sig.length - 1]
Transaction.prototype.validateSig = function(index, script, pub, DERsig) {
var type = DERsig.readUInt8(DERsig.length - 1)
DERsig = DERsig.slice(0, -1)
var hash = this.hashForSignature(script, index, type)
var sig = ecdsa.parseSig(DERsig)
sig = sig.slice(0, -1)
return pub.verify(hash, sig)
}

29
test/ecdsa.js

@ -17,10 +17,10 @@ describe('ecdsa', function() {
describe('deterministicGenerateK', function() {
it('matches the test vectors', function() {
fixtures.valid.forEach(function(f) {
var priv = BigInteger.fromHex(f.D)
var D = BigInteger.fromHex(f.D)
var h1 = crypto.sha256(f.message)
var k = ecdsa.deterministicGenerateK(h1, priv)
var k = ecdsa.deterministicGenerateK(ecparams, h1, D)
assert.equal(k.toHex(), f.k)
})
})
@ -28,14 +28,16 @@ describe('ecdsa', function() {
describe('recoverPubKey', function() {
it('succesfully recovers a public key', function() {
var signature = new Buffer('H0PG6+PUo96UPTJ/DVj8aBU5it+Nuli4YdsLuTMvfJxoHH9Jb7jYTQXCCOX2jrTChD5S1ic3vCrUQHdmB5/sEQY=', 'base64')
var D = BigInteger.ONE
var signature = new Buffer('INcvXVVEFyIfHLbDX+xoxlKFn3Wzj9g0UbhObXdMq+YMKC252o5RHFr0/cKdQe1WsBLUBi4morhgZ77obDJVuV0=', 'base64')
var obj = ecdsa.parseSigCompact(signature)
var Q = ecparams.getG().multiply(D)
var hash = message.magicHash('1111', networks.bitcoin)
var e = BigInteger.fromBuffer(hash)
var psig = ecdsa.parseSigCompact(signature)
var pubKey = new ECPubKey(ecdsa.recoverPubKey(obj.r, obj.s, hash, obj.i))
assert.equal(pubKey.toHex(), '02e8fcf4d749b35879bc1f3b14b49e67ab7301da3558c5a9b74a54f1e6339c334c')
var Qprime = ecdsa.recoverPubKey(ecparams, e, psig.r, psig.s, psig.i)
assert(Q.equals(Qprime))
})
})
@ -43,9 +45,8 @@ describe('ecdsa', function() {
it('matches the test vectors', function() {
fixtures.valid.forEach(function(f) {
var D = BigInteger.fromHex(f.D)
var priv = new ECKey(D)
var hash = crypto.sha256(f.message)
var sig = ecdsa.parseSig(priv.sign(hash))
var sig = ecdsa.sign(ecparams, hash, D)
assert.equal(sig.r.toString(), f.signature.r)
assert.equal(sig.s.toString(), f.signature.s)
@ -53,14 +54,12 @@ describe('ecdsa', function() {
})
it('should sign with low S value', function() {
var priv = ECKey.makeRandom()
var hash = crypto.sha256('Vires in numeris')
var signature = priv.sign(hash)
var psig = ecdsa.parseSig(signature)
var sig = ecdsa.sign(ecparams, hash, BigInteger.ONE)
// See BIP62 for more information
var N_OVER_TWO = ecparams.getN().shiftRight(1)
assert(psig.s.compareTo(N_OVER_TWO) <= 0)
assert(sig.s.compareTo(N_OVER_TWO) <= 0)
})
})
@ -68,13 +67,13 @@ describe('ecdsa', function() {
it('matches the test vectors', function() {
fixtures.valid.forEach(function(f) {
var D = BigInteger.fromHex(f.D)
var priv = new ECKey(D)
var Q = ecparams.getG().multiply(D)
var r = new BigInteger(f.signature.r)
var s = new BigInteger(f.signature.s)
var e = BigInteger.fromBuffer(crypto.sha256(f.message))
assert(ecdsa.verifyRaw(e, r, s, priv.pub.Q))
assert(ecdsa.verifyRaw(ecparams, e, r, s, Q))
})
})
})

4
test/transaction.js

@ -197,7 +197,7 @@ describe('Transaction', function() {
tx.sign(0, key)
var script = prevTx.outs[0].script
var sig = tx.ins[0].script.chunks[0]
var sig = new Buffer(tx.ins[0].script.chunks[0])
assert.equal(tx.validateSig(0, script, key.pub, sig), true)
})
@ -213,7 +213,7 @@ describe('Transaction', function() {
it('returns true for valid signature', function(){
var key = ECKey.fromWIF('L44f7zxJ5Zw4EK9HZtyAnzCYz2vcZ5wiJf9AuwhJakiV4xVkxBeb')
var script = prevTx.outs[0].script
var sig = validTx.ins[0].script.chunks[0]
var sig = new Buffer(validTx.ins[0].script.chunks[0])
assert.equal(validTx.validateSig(0, script, key.pub, sig), true)
})

Loading…
Cancel
Save