const { describe, it } = require('mocha') const assert = require('assert') const bitcoin = require('../../') const regtestUtils = require('./_regtest') const regtest = regtestUtils.network // See bottom of file for some helper functions used to make the payment objects needed. describe('bitcoinjs-lib (transactions with psbt)', () => { it('can create (and broadcast via 3PBP) a typical Transaction', async () => { // these are { payment: Payment; keys: ECPair[] } const alice1 = createPayment('p2pkh') const alice2 = createPayment('p2pkh') // give Alice 2 unspent outputs const inputData1 = await getInputData(5e4, alice1.payment, false, 'noredeem') const inputData2 = await getInputData(7e4, alice2.payment, false, 'noredeem') { const { hash, // string of txid or Buffer of tx hash. (txid and hash are reverse order) index, // the output index of the txo you are spending nonWitnessUtxo, // the full previous transaction as a Buffer } = inputData1 assert.deepStrictEqual({ hash, index, nonWitnessUtxo }, inputData1) } // network is only needed if you pass an address to addOutput // using script (Buffer of scriptPubkey) instead will avoid needed network. const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData1) // alice1 unspent .addInput(inputData2) // alice2 unspent .addOutput({ address: 'mwCwTceJvYV27KXBc3NJZys6CjsgsoeHmf', value: 8e4 }) // the actual "spend" .addOutput({ address: alice2.payment.address, // OR script, which is a Buffer. value: 1e4 }) // Alice's change // (in)(5e4 + 7e4) - (out)(8e4 + 1e4) = (fee)3e4 = 30000, this is the miner fee // Let's show a new feature with PSBT. // We can have multiple signers sign in parrallel and combine them. // (this is not necessary, but a nice feature) // encode to send out to the signers const psbtBaseText = psbt.toBase64() // each signer imports const signer1 = bitcoin.Psbt.fromBase64(psbtBaseText) const signer2 = bitcoin.Psbt.fromBase64(psbtBaseText) // Alice signs each input with the respective private keys signer1.signInput(0, alice1.keys[0]) signer2.signInput(1, alice2.keys[0]) // encode to send back to combiner (signer 1 and 2 are not near each other) const s1text = signer1.toBase64() const s2text = signer2.toBase64() const final1 = bitcoin.Psbt.fromBase64(s1text) const final2 = bitcoin.Psbt.fromBase64(s2text) // final1.combine(final2) would give the exact same result psbt.combine(final1, final2) // This step it new. Since we separate the signing operation and // the creation of the scriptSig and witness stack, we are able to psbt.finalizeAllInputs() // it returns an array of the success of each input, also a result attribute // which is true if all array items are true. // build and broadcast our RegTest network await regtestUtils.broadcast(psbt.extractTransaction().toHex()) // to build and broadcast to the actual Bitcoin network, see https://github.com/bitcoinjs/bitcoinjs-lib/issues/839 }) it('can create (and broadcast via 3PBP) a Transaction with an OP_RETURN output', async () => { const alice1 = createPayment('p2pkh') const inputData1 = await getInputData(2e5, alice1.payment, false, 'noredeem') const data = Buffer.from('bitcoinjs-lib', 'utf8') const embed = bitcoin.payments.embed({ data: [data] }) const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData1) .addOutput({ script: embed.output, value: 1000 }) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 1e5 }) .signInput(0, alice1.keys[0]) psbt.finalizeAllInputs() // build and broadcast to the RegTest network await regtestUtils.broadcast(psbt.extractTransaction().toHex()) }) it('can create (and broadcast via 3PBP) a Transaction, w/ a P2SH(P2MS(2 of 4)) (multisig) input', async () => { const multisig = createPayment('p2sh-p2ms(2 of 4)') const inputData1 = await getInputData(2e4, multisig.payment, false, 'p2sh') { const { hash, index, nonWitnessUtxo, redeemScript, // NEW: P2SH needs to give redeemScript when adding an input. } = inputData1 assert.deepStrictEqual({ hash, index, nonWitnessUtxo, redeemScript }, inputData1) } const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData1) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 1e4 }) .signInput(0, multisig.keys[0]) .signInput(0, multisig.keys[2]) psbt.finalizeAllInputs() const tx = psbt.extractTransaction() // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()) await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 1e4 }) }) it('can create (and broadcast via 3PBP) a Transaction, w/ a P2SH(P2WPKH) input', async () => { const p2sh = createPayment('p2sh-p2wpkh') const inputData = await getInputData(5e4, p2sh.payment, true, 'p2sh') { const { hash, index, witnessUtxo, // NEW: this is an object of the output being spent { script: Buffer; value: Satoshis; } redeemScript, } = inputData assert.deepStrictEqual({ hash, index, witnessUtxo, redeemScript }, inputData) } const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4 }) .signInput(0, p2sh.keys[0]) psbt.finalizeAllInputs() const tx = psbt.extractTransaction() // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()) await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4 }) }) it('can create (and broadcast via 3PBP) a Transaction, w/ a P2WPKH input', async () => { // the only thing that changes is you don't give a redeemscript for input data const p2wpkh = createPayment('p2wpkh') const inputData = await getInputData(5e4, p2wpkh.payment, true, 'noredeem') { const { hash, index, witnessUtxo, } = inputData assert.deepStrictEqual({ hash, index, witnessUtxo }, inputData) } const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4 }) .signInput(0, p2wpkh.keys[0]) psbt.finalizeAllInputs() const tx = psbt.extractTransaction() // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()) await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4 }) }) it('can create (and broadcast via 3PBP) a Transaction, w/ a P2WSH(P2PK) input', async () => { const p2wsh = createPayment('p2wsh-p2pk') const inputData = await getInputData(5e4, p2wsh.payment, true, 'p2wsh') { const { hash, index, witnessUtxo, witnessScript, // NEW: A Buffer of the witnessScript } = inputData assert.deepStrictEqual({ hash, index, witnessUtxo, witnessScript }, inputData) } const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4 }) .signInput(0, p2wsh.keys[0]) psbt.finalizeAllInputs() const tx = psbt.extractTransaction() // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()) await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4 }) }) it('can create (and broadcast via 3PBP) a Transaction, w/ a P2SH(P2WSH(P2MS(3 of 4))) (SegWit multisig) input', async () => { const p2sh = createPayment('p2sh-p2wsh-p2ms(3 of 4)') const inputData = await getInputData(5e4, p2sh.payment, true, 'p2sh-p2wsh') { const { hash, index, witnessUtxo, redeemScript, witnessScript, } = inputData assert.deepStrictEqual({ hash, index, witnessUtxo, redeemScript, witnessScript }, inputData) } const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4 }) .signInput(0, p2sh.keys[0]) .signInput(0, p2sh.keys[2]) .signInput(0, p2sh.keys[3]) psbt.finalizeAllInputs() const tx = psbt.extractTransaction() // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()) await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4 }) }) }) function createPayment(_type) { const splitType = _type.split('-').reverse(); const isMultisig = splitType[0].slice(0, 4) === 'p2ms'; const keys = []; let m; if (isMultisig) { const match = splitType[0].match(/^p2ms\((\d+) of (\d+)\)$/) m = parseInt(match[1]) let n = parseInt(match[2]) while (n > 1) { keys.push(bitcoin.ECPair.makeRandom({ network: regtest })); n-- } } keys.push(bitcoin.ECPair.makeRandom({ network: regtest })); let payment; splitType.forEach(type => { if (type.slice(0, 4) === 'p2ms') { payment = bitcoin.payments.p2ms({ m, pubkeys: keys.map(key => key.publicKey).sort(), network: regtest, }); } else if (['p2sh', 'p2wsh'].indexOf(type) > -1) { payment = bitcoin.payments[type]({ redeem: payment, network: regtest, }); } else { payment = bitcoin.payments[type]({ pubkey: keys[0].publicKey, network: regtest, }); } }); return { payment, keys, }; } function getWitnessUtxo(out) { delete out.address; out.script = Buffer.from(out.script, 'hex'); return out; } async function getInputData(amount, payment, isSegwit, redeemType) { const unspent = await regtestUtils.faucetComplex(payment.output, amount); const utx = await regtestUtils.fetch(unspent.txId); // for non segwit inputs, you must pass the full transaction buffer const nonWitnessUtxo = Buffer.from(utx.txHex, 'hex'); // for segwit inputs, you only need the output script and value as an object. const witnessUtxo = getWitnessUtxo(utx.outs[unspent.vout]); const mixin = isSegwit ? { witnessUtxo } : { nonWitnessUtxo }; const mixin2 = {}; switch (redeemType) { case 'p2sh': mixin2.redeemScript = payment.redeem.output; break; case 'p2wsh': mixin2.witnessScript = payment.redeem.output; break; case 'p2sh-p2wsh': mixin2.witnessScript = payment.redeem.redeem.output; mixin2.redeemScript = payment.redeem.output; break; } return { hash: unspent.txId, index: unspent.vout, ...mixin, ...mixin2, }; }