var assert = require('assert') var crypto = require('crypto') var sec = require('./sec') var ecparams = sec("secp256k1") var BigInteger = require('./bigi') var ECPointFp = require('./ec').ECPointFp var P_OVER_FOUR = null function implShamirsTrick(P, k, Q, l) { var m = Math.max(k.bitLength(), l.bitLength()) var Z = P.add2D(Q) var R = P.curve.getInfinity() for (var i = m - 1; i >= 0; --i) { R = R.twice2D() R.z = BigInteger.ONE if (k.testBit(i)) { if (l.testBit(i)) { R = R.add2D(Z) } else { R = R.add2D(P) } } else { if (l.testBit(i)) { R = R.add2D(Q) } } } return R } var ecdsa = { deterministicGenerateK: function(hash, D) { function HmacSHA256(buffer, secret) { return crypto.createHmac('sha256', secret).update(buffer).digest() } assert(Buffer.isBuffer(hash), 'Hash must be a Buffer') assert.equal(hash.length, 32, 'Hash must be 256 bit') assert(D instanceof BigInteger, 'Private key must be a BigInteger') var x = D.toBuffer(32) var k = new Buffer(32) var v = new Buffer(32) k.fill(0) v.fill(1) k = HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k) v = HmacSHA256(v, k) k = HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k) v = HmacSHA256(v, k) v = HmacSHA256(v, k) var n = ecparams.getN() var kB = BigInteger.fromBuffer(v).mod(n) assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value') assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value') return kB }, sign: function (hash, D) { var k = ecdsa.deterministicGenerateK(hash, D) var n = ecparams.getN() var G = ecparams.getG() var Q = G.multiply(k) var e = BigInteger.fromBuffer(hash) var r = Q.getX().toBigInteger().mod(n) assert.notEqual(r.signum(), 0, 'Invalid R value') var s = k.modInverse(n).multiply(e.add(D.multiply(r))).mod(n) assert.notEqual(s.signum(), 0, 'Invalid S value') var N_OVER_TWO = n.divide(BigInteger.valueOf(2)) // Make 's' value 'low' as per bip62 if (s.compareTo(N_OVER_TWO) > 0) { s = n.subtract(s) } return ecdsa.serializeSig(r, s) }, verify: function (hash, sig, pubkey) { var r,s if (Array.isArray(sig) || Buffer.isBuffer(sig)) { var obj = ecdsa.parseSig(sig) r = obj.r s = obj.s } else if ("object" === typeof sig && sig.r && sig.s) { r = sig.r s = sig.s } else { throw new Error("Invalid value for signature") } var Q if (pubkey instanceof ECPointFp) { Q = pubkey } else if (Array.isArray(pubkey) || Buffer.isBuffer(pubkey)) { Q = ECPointFp.decodeFrom(ecparams.getCurve(), pubkey) } else { throw new Error("Invalid format for pubkey value, must be byte array or ECPointFp") } var e = BigInteger.fromBuffer(hash) return ecdsa.verifyRaw(e, r, s, Q) }, verifyRaw: function (e, r, s, Q) { var n = ecparams.getN() var G = ecparams.getG() if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) { return false } if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) { return false } var c = s.modInverse(n) var u1 = e.multiply(c).mod(n) var u2 = r.multiply(c).mod(n) // TODO(!!!): For some reason Shamir's trick isn't working with // signed message verification!? Probably an implementation // error! //var point = implShamirsTrick(G, u1, Q, u2) var point = G.multiply(u1).add(Q.multiply(u2)) var v = point.getX().toBigInteger().mod(n) return v.equals(r) }, /** * Serialize a signature into DER format. * * Takes two BigIntegers representing r and s and returns a byte array. */ serializeSig: function (r, s) { var rBa = r.toByteArraySigned() var sBa = s.toByteArraySigned() var sequence = [] sequence.push(0x02); // INTEGER sequence.push(rBa.length) sequence = sequence.concat(rBa) sequence.push(0x02); // INTEGER sequence.push(sBa.length) sequence = sequence.concat(sBa) sequence.unshift(sequence.length) sequence.unshift(0x30); // SEQUENCE return sequence }, /** * Parses a byte array containing a DER-encoded signature. * * This function will return an object of the form: * * { * r: BigInteger, * s: BigInteger * } */ parseSig: function (sig) { var cursor if (sig[0] != 0x30) { throw new Error("Signature not a valid DERSequence") } cursor = 2 if (sig[cursor] != 0x02) { throw new Error("First element in signature must be a DERInteger") } var rBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]) cursor += 2+sig[cursor+1] if (sig[cursor] != 0x02) { throw new Error("Second element in signature must be a DERInteger") } var sBa = sig.slice(cursor+2, cursor+2+sig[cursor+1]) cursor += 2+sig[cursor+1] //if (cursor != sig.length) // throw new Error("Extra bytes in signature") var r = BigInteger.fromBuffer(rBa) var s = BigInteger.fromBuffer(sBa) return {r: r, s: s} }, parseSigCompact: function (sig) { if (sig.length !== 65) { throw new Error("Signature has the wrong length") } // Signature is prefixed with a type byte storing three bits of // information. var i = sig[0] - 27 if (i < 0 || i > 7) { throw new Error("Invalid signature type") } var n = ecparams.getN() var r = BigInteger.fromBuffer(sig.slice(1, 33)).mod(n) var s = BigInteger.fromBuffer(sig.slice(33, 65)).mod(n) return {r: r, s: s, i: i} }, /** * Recover a public key from a signature. * * See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public * Key Recovery Operation". * * http://www.secg.org/download/aid-780/sec1-v2.pdf */ recoverPubKey: function (r, s, hash, i) { // The recovery parameter i has two bits. i = i & 3 // The less significant bit specifies whether the y coordinate // of the compressed point is even or not. var isYEven = i & 1 // The more significant bit specifies whether we should use the // first or second candidate key. var isSecondKey = i >> 1 var n = ecparams.getN() var G = ecparams.getG() var curve = ecparams.getCurve() var p = curve.getQ() var a = curve.getA().toBigInteger() var b = curve.getB().toBigInteger() // We precalculate (p + 1) / 4 where p is if the field order if (!P_OVER_FOUR) { P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4)) } // 1.1 Compute x var x = isSecondKey ? r.add(n) : r // 1.3 Convert x to point var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p) var beta = alpha.modPow(P_OVER_FOUR, p) // var xorOdd = beta.isEven() ? (i % 2) : ((i+1) % 2) // If beta is even, but y isn't or vice versa, then convert it, // otherwise we're done and y == beta. var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta) // 1.4 Check that nR is at infinity var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)) R.validate() // 1.5 Compute e from M var e = BigInteger.fromBuffer(hash) var eNeg = BigInteger.ZERO.subtract(e).mod(n) // 1.6 Compute Q = r^-1 (sR - eG) var rInv = r.modInverse(n) var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv) Q.validate() if (!ecdsa.verifyRaw(e, r, s, Q)) { throw new Error("Pubkey recovery unsuccessful") } return Q }, /** * Calculate pubkey extraction parameter. * * When extracting a pubkey from a signature, we have to * distinguish four different cases. Rather than putting this * burden on the verifier, Bitcoin includes a 2-bit value with the * signature. * * This function simply tries all four cases and returns the value * that resulted in a successful pubkey recovery. */ calcPubKeyRecoveryParam: function (origPubKey, r, s, hash) { for (var i = 0; i < 4; i++) { var pubKey = ecdsa.recoverPubKey(r, s, hash, i) if (pubKey.equals(origPubKey)) { return i } } throw new Error("Unable to find valid recovery factor") } } module.exports = ecdsa