/* global describe, it */ var assert = require('assert') var async = require('async') var bigi = require('bigi') var bitcoin = require('../../') var blockchain = require('./_blockchain') var crypto = require('crypto') var ecurve = require('ecurve') var secp256k1 = ecurve.getCurveByName('secp256k1') describe('bitcoinjs-lib (crypto)', function () { it('can generate a single-key stealth address', function () { var G = secp256k1.G var n = secp256k1.n function stealthSend (Q) { var noncePair = bitcoin.ECPair.makeRandom() var e = noncePair.d var eQ = Q.multiply(e) // shared secret var c = bigi.fromBuffer(bitcoin.crypto.sha256(eQ.getEncoded())) var cG = G.multiply(c) var Qprime = Q.add(cG) return { shared: new bitcoin.ECPair(null, Qprime), nonce: new bitcoin.ECPair(null, noncePair.Q) } } function stealthReceive (d, P) { var dP = P.multiply(d) // shared secret var c = bigi.fromBuffer(bitcoin.crypto.sha256(dP.getEncoded())) var derived = new bitcoin.ECPair(d.add(c).mod(n)) return derived } // receiver private key var receiver = bitcoin.ECPair.fromWIF('5KYZdUEo39z3FPrtuX2QbbwGnNP5zTd7yyr2SC1j299sBCnWjss') var stealthS = stealthSend(receiver.Q) // public, done by sender // ... sender now reveals nonce to receiver var stealthR = stealthReceive(receiver.d, stealthS.nonce.Q) // private, done by receiver // and check that we derived both sides correctly assert.equal(stealthS.shared.getAddress(), stealthR.getAddress()) }) // TODO it.skip('can generate a dual-key stealth address', function () {}) it("can recover a parent private key from the parent's public key and a derived non-hardened child private key", function () { function recoverParent (master, child) { assert(!master.keyPair.d, 'You already have the parent private key') assert(child.keyPair.d, 'Missing child private key') var curve = secp256k1 var QP = master.keyPair.Q var serQP = master.keyPair.getPublicKeyBuffer() var d1 = child.keyPair.d var d2 var data = new Buffer(37) serQP.copy(data, 0) // search index space until we find it for (var i = 0; i < bitcoin.HDNode.HIGHEST_BIT; ++i) { data.writeUInt32BE(i, 33) // calculate I var I = crypto.createHmac('sha512', master.chainCode).update(data).digest() var IL = I.slice(0, 32) var pIL = bigi.fromBuffer(IL) // See hdnode.js:273 to understand d2 = d1.subtract(pIL).mod(curve.n) var Qp = new bitcoin.ECPair(d2).Q if (Qp.equals(QP)) break } var node = new bitcoin.HDNode(new bitcoin.ECPair(d2), master.chainCode, master.network) node.depth = master.depth node.index = master.index node.masterFingerprint = master.masterFingerprint return node } var seed = crypto.randomBytes(32) var master = bitcoin.HDNode.fromSeedBuffer(seed) var child = master.derive(6) // m/6 // now for the recovery var neuteredMaster = master.neutered() var recovered = recoverParent(neuteredMaster, child) assert.strictEqual(recovered.toBase58(), master.toBase58()) }) it('can recover a private key from duplicate R values', function (done) { this.timeout(10000) var inputs = [ { txId: 'f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50', vout: 0 }, { txId: 'f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50', vout: 1 } ] var txIds = inputs.map(function (x) { return x.txId }) // first retrieve the relevant transactions blockchain.m.transactions.get(txIds, function (err, results) { assert.ifError(err) var transactions = {} results.forEach(function (tx) { transactions[tx.txId] = bitcoin.Transaction.fromHex(tx.txHex) }) var tasks = [] // now we need to collect/transform a bit of data from the selected inputs inputs.forEach(function (input) { var transaction = transactions[input.txId] var script = transaction.ins[input.vout].script var scriptChunks = bitcoin.script.decompile(script) assert(bitcoin.script.isPubKeyHashInput(scriptChunks), 'Expected pubKeyHash script') var prevOutTxId = Array.prototype.reverse.call(new Buffer(transaction.ins[input.vout].hash)).toString('hex') var prevVout = transaction.ins[input.vout].index tasks.push(function (callback) { blockchain.m.transactions.get(prevOutTxId, function (err, result) { if (err) return callback(err) var prevOut = bitcoin.Transaction.fromHex(result.txHex) var prevOutScript = prevOut.outs[prevVout].script var scriptSignature = bitcoin.ECSignature.parseScriptSignature(scriptChunks[0]) var publicKey = bitcoin.ECPair.fromPublicKeyBuffer(scriptChunks[1]) var m = transaction.hashForSignature(input.vout, prevOutScript, scriptSignature.hashType) assert(publicKey.verify(m, scriptSignature.signature), 'Invalid m') // store the required information input.signature = scriptSignature.signature input.z = bigi.fromBuffer(m) return callback() }) }) }) // finally, run the tasks, then on to the math async.parallel(tasks, function (err) { if (err) throw err var n = secp256k1.n for (var i = 0; i < inputs.length; ++i) { for (var j = i + 1; j < inputs.length; ++j) { var inputA = inputs[i] var inputB = inputs[j] // enforce matching r values assert.strictEqual(inputA.signature.r.toString(), inputB.signature.r.toString()) var r = inputA.signature.r var rInv = r.modInverse(n) var s1 = inputA.signature.s var s2 = inputB.signature.s var z1 = inputA.z var z2 = inputB.z var zz = z1.subtract(z2).mod(n) var ss = s1.subtract(s2).mod(n) // k = (z1 - z2) / (s1 - s2) // d1 = (s1 * k - z1) / r // d2 = (s2 * k - z2) / r var k = zz.multiply(ss.modInverse(n)).mod(n) var d1 = ((s1.multiply(k).mod(n)).subtract(z1).mod(n)).multiply(rInv).mod(n) var d2 = ((s2.multiply(k).mod(n)).subtract(z2).mod(n)).multiply(rInv).mod(n) // enforce matching private keys assert.strictEqual(d1.toString(), d2.toString()) } } done() }) }) }) })