// Basic Javascript Elliptic Curve implementation // Ported loosely from BouncyCastle's Java EC code // Only Fp curves implemented for now var assert = require('assert') var BigInteger = require('bigi') // constants var TWO = BigInteger.valueOf(2) var THREE = BigInteger.valueOf(3) var SEVEN = BigInteger.valueOf(7) function ECFieldElementFp(q,x) { this.x = x; // TODO if(x.compareTo(q) >= 0) error this.q = q; } function feFpEquals(other) { if(other == this) return true; return (this.q.equals(other.q) && this.x.equals(other.x)); } function feFpToBigInteger() { return this.x; } function feFpNegate() { return new ECFieldElementFp(this.q, this.x.negate().mod(this.q)); } function feFpAdd(b) { return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q)); } function feFpSubtract(b) { return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q)); } function feFpMultiply(b) { return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q)); } function feFpSquare() { return new ECFieldElementFp(this.q, this.x.square().mod(this.q)); } function feFpDivide(b) { return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)); } ECFieldElementFp.prototype.equals = feFpEquals; ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger; ECFieldElementFp.prototype.negate = feFpNegate; ECFieldElementFp.prototype.add = feFpAdd; ECFieldElementFp.prototype.subtract = feFpSubtract; ECFieldElementFp.prototype.multiply = feFpMultiply; ECFieldElementFp.prototype.square = feFpSquare; ECFieldElementFp.prototype.divide = feFpDivide; // ---------------- // ECPointFp // constructor function ECPointFp(curve,x,y,z) { this.curve = curve; this.x = x; this.y = y; // Projective coordinates: either zinv == null or z * zinv == 1 // z and zinv are just BigIntegers, not fieldElements if(z == null) { this.z = BigInteger.ONE; } else { this.z = z; } this.zinv = null; //TODO: compression flag } function pointFpGetX() { if(this.zinv == null) { this.zinv = this.z.modInverse(this.curve.q); } return this.curve.fromBigInteger(this.x.toBigInteger().multiply(this.zinv).mod(this.curve.q)); } function pointFpGetY() { if(this.zinv == null) { this.zinv = this.z.modInverse(this.curve.q); } return this.curve.fromBigInteger(this.y.toBigInteger().multiply(this.zinv).mod(this.curve.q)); } function pointFpEquals(other) { if(other == this) return true; if(this.isInfinity()) return other.isInfinity(); if(other.isInfinity()) return this.isInfinity(); var u, v; // u = Y2 * Z1 - Y1 * Z2 u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q); if (u.signum() !== 0) return false; // v = X2 * Z1 - X1 * Z2 v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q); return v.signum() === 0; } function pointFpIsInfinity() { if ((this.x == null) && (this.y == null)) return true; return this.z.signum() === 0 && this.y.toBigInteger().signum() !== 0; } function pointFpNegate() { return new ECPointFp(this.curve, this.x, this.y.negate(), this.z); } function pointFpAdd(b) { if(this.isInfinity()) return b; if(b.isInfinity()) return this; // u = Y2 * Z1 - Y1 * Z2 var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q); // v = X2 * Z1 - X1 * Z2 var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q); if(v.signum() === 0) { if(u.signum() === 0) { return this.twice(); // this == b, so double } return this.curve.getInfinity(); // this = -b, so infinity } var x1 = this.x.toBigInteger(); var y1 = this.y.toBigInteger(); var x2 = b.x.toBigInteger(); var y2 = b.y.toBigInteger(); var v2 = v.square(); var v3 = v2.multiply(v); var x1v2 = x1.multiply(v2); var zu2 = u.square().multiply(this.z); // x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3) var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q); // y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3 var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q); // z3 = v^3 * z1 * z2 var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q); return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); } function pointFpTwice() { if(this.isInfinity()) return this; if(this.y.toBigInteger().signum() === 0) return this.curve.getInfinity(); var x1 = this.x.toBigInteger(); var y1 = this.y.toBigInteger(); var y1z1 = y1.multiply(this.z); var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q); var a = this.curve.a.toBigInteger(); // w = 3 * x1^2 + a * z1^2 var w = x1.square().multiply(THREE); if(a.signum() !== 0) { w = w.add(this.z.square().multiply(a)); } w = w.mod(this.curve.q); // x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1) var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q); // y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3 var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.pow(3)).mod(this.curve.q); // z3 = 8 * (y1 * z1)^3 var z3 = y1z1.pow(3).shiftLeft(3).mod(this.curve.q); return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3); } // Simple NAF (Non-Adjacent Form) multiplication algorithm // TODO: modularize the multiplication algorithm function pointFpMultiply(k) { if(this.isInfinity()) return this; if(k.signum() === 0) return this.curve.getInfinity() var e = k; var h = e.multiply(THREE) var neg = this.negate(); var R = this; var i; for(i = h.bitLength() - 2; i > 0; --i) { R = R.twice(); var hBit = h.testBit(i); var eBit = e.testBit(i); if (hBit != eBit) { R = R.add(hBit ? this : neg); } } return R; } // Compute this*j + x*k (simultaneous multiplication) function pointFpMultiplyTwo(j,x,k) { var i; if(j.bitLength() > k.bitLength()) i = j.bitLength() - 1; else i = k.bitLength() - 1; var R = this.curve.getInfinity(); var both = this.add(x); while(i >= 0) { R = R.twice(); if(j.testBit(i)) { if(k.testBit(i)) { R = R.add(both); } else { R = R.add(this); } } else { if(k.testBit(i)) { R = R.add(x); } } --i; } return R; } ECPointFp.prototype.getX = pointFpGetX; ECPointFp.prototype.getY = pointFpGetY; ECPointFp.prototype.equals = pointFpEquals; ECPointFp.prototype.isInfinity = pointFpIsInfinity; ECPointFp.prototype.negate = pointFpNegate; ECPointFp.prototype.add = pointFpAdd; ECPointFp.prototype.twice = pointFpTwice; ECPointFp.prototype.multiply = pointFpMultiply; ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo; // ---------------- // ECCurveFp // constructor function ECCurveFp(q,a,b) { this.q = q; this.a = this.fromBigInteger(a); this.b = this.fromBigInteger(b); this.infinity = new ECPointFp(this, null, null); } function curveFpGetQ() { return this.q; } function curveFpGetA() { return this.a; } function curveFpGetB() { return this.b; } function curveFpEquals(other) { if(other == this) return true; return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b)); } function curveFpGetInfinity() { return this.infinity; } function curveFpFromBigInteger(x) { return new ECFieldElementFp(this.q, x); } ECCurveFp.prototype.getQ = curveFpGetQ; ECCurveFp.prototype.getA = curveFpGetA; ECCurveFp.prototype.getB = curveFpGetB; ECCurveFp.prototype.equals = curveFpEquals; ECCurveFp.prototype.getInfinity = curveFpGetInfinity; ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger; // prepends 0 if bytes < len // cuts off start if bytes > len function integerToBytes(i, len) { var bytes = i.toByteArrayUnsigned(); if (len < bytes.length) { bytes = bytes.slice(bytes.length-len); } else while (len > bytes.length) { bytes.unshift(0); } return bytes; }; ECFieldElementFp.prototype.getByteLength = function () { return Math.floor((this.toBigInteger().bitLength() + 7) / 8); }; ECPointFp.prototype.getEncoded = function(compressed) { var x = this.getX().toBigInteger() var y = this.getY().toBigInteger() var buffer // 0x02/0x03 | X if (compressed) { buffer = new Buffer(33) buffer.writeUInt8(y.isEven() ? 0x02 : 0x03, 0) // 0x04 | X | Y } else { buffer = new Buffer(65) buffer.writeUInt8(0x04, 0) y.toBuffer(32).copy(buffer, 33) } x.toBuffer(32).copy(buffer, 1) return buffer } ECPointFp.decodeFrom = function (curve, buffer) { var type = buffer.readUInt8(0) var compressed = type !== 0x04 var x = BigInteger.fromBuffer(buffer.slice(1, 33)) var y if (compressed) { assert.equal(buffer.length, 33, 'Invalid sequence length') assert(type === 0x02 || type === 0x03, 'Invalid sequence tag') var isYEven = (type === 0x02) var p = curve.getQ() // We precalculate (p + 1) / 4 where p is the field order if (!curve.P_OVER_FOUR) { curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2) } // Convert x to point var alpha = x.pow(3).add(SEVEN).mod(p) var beta = alpha.modPow(curve.P_OVER_FOUR, p) // If beta is even, but y isn't, or vice versa, then convert it, // otherwise we're done and y == beta. y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta } else { assert.equal(buffer.length, 65, 'Invalid sequence length') y = BigInteger.fromBuffer(buffer.slice(33)) } var Q = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)) return { Q: Q, compressed: compressed } } ECPointFp.prototype.add2D = function (b) { if(this.isInfinity()) return b; if(b.isInfinity()) return this; if (this.x.equals(b.x)) { if (this.y.equals(b.y)) { // this = b, i.e. this must be doubled return this.twice(); } // this = -b, i.e. the result is the point at infinity return this.curve.getInfinity(); } var x_x = b.x.subtract(this.x); var y_y = b.y.subtract(this.y); var gamma = y_y.divide(x_x); var x3 = gamma.square().subtract(this.x).subtract(b.x); var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y); return new ECPointFp(this.curve, x3, y3); }; ECPointFp.prototype.twice2D = function () { if (this.isInfinity()) return this; if (this.y.toBigInteger().signum() === 0) { // if y1 == 0, then (x1, y1) == (x1, -y1) // and hence this = -this and thus 2(x1, y1) == infinity return this.curve.getInfinity(); } var FpTWO = this.curve.fromBigInteger(TWO); var FpTHREE = this.curve.fromBigInteger(THREE) var gamma = this.x.square().multiply(FpTHREE).add(this.curve.a).divide(this.y.multiply(FpTWO)); var x3 = gamma.square().subtract(this.x.multiply(FpTWO)); var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y); return new ECPointFp(this.curve, x3, y3); }; ECPointFp.prototype.multiply2D = function (k) { if(this.isInfinity()) return this; if (k.signum() === 0) return this.curve.getInfinity() var e = k; var h = e.multiply(THREE) var neg = this.negate(); var R = this; var i; for (i = h.bitLength() - 2; i > 0; --i) { R = R.twice(); var hBit = h.testBit(i); var eBit = e.testBit(i); if (hBit != eBit) { R = R.add2D(hBit ? this : neg); } } return R; }; ECPointFp.prototype.isOnCurve = function () { var x = this.getX().toBigInteger(); var y = this.getY().toBigInteger(); var a = this.curve.getA().toBigInteger(); var b = this.curve.getB().toBigInteger(); var p = this.curve.getQ() var lhs = y.square().mod(p) var rhs = x.pow(3).add(a.multiply(x)).add(b).mod(p) return lhs.equals(rhs); }; ECPointFp.prototype.toString = function () { return '('+this.getX().toBigInteger().toString()+','+ this.getY().toBigInteger().toString()+')'; }; /** * Validate an elliptic curve point. * * See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive */ ECPointFp.prototype.validate = function () { var n = this.curve.getQ(); // Check Q != O if (this.isInfinity()) { throw new Error("Point is at infinity."); } // Check coordinate bounds var x = this.getX().toBigInteger(); var y = this.getY().toBigInteger(); if (x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0) { throw new Error('x coordinate out of bounds'); } if (y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0) { throw new Error('y coordinate out of bounds'); } // Check y^2 = x^3 + ax + b (mod n) if (!this.isOnCurve()) { throw new Error("Point is not on the curve."); } // Check nQ = 0 (Q is a scalar multiple of G) if (this.multiply(n).isInfinity()) { // TODO: This check doesn't work - fix. throw new Error("Point is not a scalar multiple of G."); } return true; }; module.exports = ECCurveFp; module.exports.ECPointFp = ECPointFp;