var assert = require('assert') var base58 = require('./base58') var BigInteger = require('bigi') var crypto = require('./crypto') var ECKey = require('./eckey') var ECPubKey = require('./ecpubkey') var ECPointFp = require('./ec').ECPointFp var networks = require('./networks') var sec = require('./sec') var ecparams = sec("secp256k1") function findBIP32ParamsByVersion(version) { for (var name in networks) { var network = networks[name] for (var type in network.bip32) { if (version != network.bip32[type]) continue return { isPrivate: (type === 'private'), network: network } } } assert(false, 'Could not find version ' + version.toString(16)) } function HDNode(K, chainCode, network) { network = network || networks.bitcoin assert(Buffer.isBuffer(chainCode), 'Expected Buffer, got ' + chainCode) assert(network.bip32, 'Unknown BIP32 constants for network') this.chainCode = chainCode this.depth = 0 this.index = 0 this.network = network if (K instanceof BigInteger) { this.privKey = new ECKey(K, true) this.pubKey = this.privKey.pub } else { this.pubKey = new ECPubKey(K, true) } } HDNode.MASTER_SECRET = new Buffer('Bitcoin seed') HDNode.HIGHEST_BIT = 0x80000000 HDNode.LENGTH = 78 HDNode.fromSeedBuffer = function(seed, network) { var I = crypto.HmacSHA512(seed, HDNode.MASTER_SECRET) var IL = I.slice(0, 32) var IR = I.slice(32) // In case IL is 0 or >= n, the master key is invalid // This is handled by `new ECKey` in the HDNode constructor var pIL = BigInteger.fromBuffer(IL) return new HDNode(pIL, IR, network) } HDNode.fromSeedHex = function(hex, network) { return HDNode.fromSeedBuffer(new Buffer(hex, 'hex'), network) } HDNode.fromBase58 = function(string) { var buffer = base58.decode(string) var payload = buffer.slice(0, -4) var checksum = buffer.slice(-4) var newChecksum = crypto.hash256(payload).slice(0, 4) assert.deepEqual(newChecksum, checksum, 'Invalid checksum') return HDNode.fromBuffer(payload) } HDNode.fromBuffer = function(buffer) { assert.strictEqual(buffer.length, HDNode.LENGTH, 'Invalid buffer length') // 4 byte: version bytes var version = buffer.readUInt32BE(0) var params = findBIP32ParamsByVersion(version) // 1 byte: depth: 0x00 for master nodes, 0x01 for level-1 descendants, ... var depth = buffer.readUInt8(4) // 4 bytes: the fingerprint of the parent's key (0x00000000 if master key) var parentFingerprint = buffer.readUInt32BE(5) if (depth === 0) { assert.strictEqual(parentFingerprint, 0x00000000, 'Invalid parent fingerprint') } // 4 bytes: child number. This is the number i in xi = xpar/i, with xi the key being serialized. // This is encoded in MSB order. (0x00000000 if master key) var index = buffer.readUInt32BE(9) assert(depth > 0 || index === 0, 'Invalid index') // 32 bytes: the chain code var chainCode = buffer.slice(13, 45) // 33 bytes: the public key or private key data (0x02 + X or 0x03 + X for // public keys, 0x00 + k for private keys) var data = buffer.slice(45, 78) var hd if (params.isPrivate) { assert.strictEqual(data.readUInt8(0), 0x00, 'Invalid private key') data = data.slice(1) var D = BigInteger.fromBuffer(data) hd = new HDNode(D, chainCode, params.network) } else { var decode = ECPointFp.decodeFrom(ecparams.getCurve(), data) assert.equal(decode.compressed, true, 'Invalid public key') // When importing a serialized extended public key, implementations must verify whether the X coordinate in the public key data corresponds to a point on the curve. If not, the extended public key is invalid. decode.Q.validate() hd = new HDNode(decode.Q, chainCode, params.network) } hd.depth = depth hd.index = index hd.parentFingerprint = parentFingerprint return hd } HDNode.fromHex = function(hex, isPrivate) { return HDNode.fromBuffer(new Buffer(hex, 'hex')) } HDNode.prototype.getIdentifier = function() { return crypto.hash160(this.pubKey.toBuffer()) } HDNode.prototype.getFingerprint = function() { return this.getIdentifier().slice(0, 4) } HDNode.prototype.getAddress = function() { return this.pubKey.getAddress(this.network.pubKeyHash) } HDNode.prototype.toBase58 = function(isPrivate) { var buffer = this.toBuffer(isPrivate) var checksum = crypto.hash256(buffer).slice(0, 4) return base58.encode(Buffer.concat([ buffer, checksum ])) } HDNode.prototype.toBuffer = function(isPrivate) { if (isPrivate == undefined) isPrivate = !!this.privKey // Version var version = isPrivate ? this.network.bip32.private : this.network.bip32.public var buffer = new Buffer(HDNode.LENGTH) // 4 bytes: version bytes buffer.writeUInt32BE(version, 0) // Depth // 1 byte: depth: 0x00 for master nodes, 0x01 for level-1 descendants, .... buffer.writeUInt8(this.depth, 4) // 4 bytes: the fingerprint of the parent's key (0x00000000 if master key) var fingerprint = (this.depth === 0) ? 0x00000000 : this.parentFingerprint buffer.writeUInt32BE(fingerprint, 5) // 4 bytes: child number. This is the number i in xi = xpar/i, with xi the key being serialized. // This is encoded in Big endian. (0x00000000 if master key) buffer.writeUInt32BE(this.index, 9) // 32 bytes: the chain code this.chainCode.copy(buffer, 13) // 33 bytes: the public key or private key data if (isPrivate) { assert(this.privKey, 'Missing private key') // 0x00 + k for private keys buffer.writeUInt8(0, 45) this.privKey.D.toBuffer(32).copy(buffer, 46) } else { // X9.62 encoding for public keys this.pubKey.toBuffer().copy(buffer, 45) } return buffer } HDNode.prototype.toHex = function(isPrivate) { return this.toBuffer(isPrivate).toString('hex') } // https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#child-key-derivation-ckd-functions HDNode.prototype.derive = function(index) { var isHardened = index >= HDNode.HIGHEST_BIT var indexBuffer = new Buffer(4) indexBuffer.writeUInt32BE(index, 0) var data // Hardened child if (isHardened) { assert(this.privKey, 'Could not derive hardened child key') // data = 0x00 || ser256(kpar) || ser32(index) data = Buffer.concat([ this.privKey.D.toBuffer(33), indexBuffer ]) // Normal child } else { // data = serP(point(kpar)) || ser32(index) // = serP(Kpar) || ser32(index) data = Buffer.concat([ this.pubKey.toBuffer(), indexBuffer ]) } var I = crypto.HmacSHA512(data, this.chainCode) var IL = I.slice(0, 32) var IR = I.slice(32) var pIL = BigInteger.fromBuffer(IL) // In case parse256(IL) >= n, proceed with the next value for i if (pIL.compareTo(ecparams.getN()) >= 0) { return this.derive(index + 1) } // Private parent key -> private child key if (this.privKey) { // ki = parse256(IL) + kpar (mod n) var ki = pIL.add(this.privKey.D).mod(ecparams.getN()) // In case ki == 0, proceed with the next value for i if (ki.signum() === 0) { return this.derive(index + 1) } hd = new HDNode(ki, IR, this.network) // Public parent key -> public child key } else { // Ki = point(parse256(IL)) + Kpar // = G*IL + Kpar var Ki = ecparams.getG().multiply(pIL).add(this.pubKey.Q) // In case Ki is the point at infinity, proceed with the next value for i if (Ki.isInfinity()) { return this.derive(index + 1) } hd = new HDNode(Ki, IR, this.network) } hd.depth = this.depth + 1 hd.index = index hd.parentFingerprint = this.getFingerprint().readUInt32BE(0) return hd } HDNode.prototype.deriveHardened = function(index) { // Only derives hardened private keys by default return this.derive(index + HDNode.HIGHEST_BIT) } HDNode.prototype.toString = HDNode.prototype.toBase58 module.exports = HDNode