var assert = require('assert') var crypto = require('./crypto') var sec = require('./sec') var ecparams = sec("secp256k1") var BigInteger = require('bigi') var ECPointFp = require('./ec').ECPointFp var ecdsa = { deterministicGenerateK: function(hash, D) { assert(Buffer.isBuffer(hash), 'Hash must be a Buffer') assert.equal(hash.length, 32, 'Hash must be 256 bit') assert(D instanceof BigInteger, 'Private key must be a BigInteger') var x = D.toBuffer(32) var k = new Buffer(32) var v = new Buffer(32) k.fill(0) v.fill(1) k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k) v = crypto.HmacSHA256(v, k) k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k) v = crypto.HmacSHA256(v, k) v = crypto.HmacSHA256(v, k) var n = ecparams.getN() var kB = BigInteger.fromBuffer(v).mod(n) assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value') assert(kB.compareTo(ecparams.getN()) < 0, 'Invalid k value') return kB }, sign: function (hash, D) { var k = ecdsa.deterministicGenerateK(hash, D) var n = ecparams.getN() var G = ecparams.getG() var Q = G.multiply(k) var e = BigInteger.fromBuffer(hash) var r = Q.getX().toBigInteger().mod(n) assert.notEqual(r.signum(), 0, 'Invalid R value') var s = k.modInverse(n).multiply(e.add(D.multiply(r))).mod(n) assert.notEqual(s.signum(), 0, 'Invalid S value') var N_OVER_TWO = n.shiftRight(1) // enforce low S values, see bip62: 'low s values in signatures' if (s.compareTo(N_OVER_TWO) > 0) { s = n.subtract(s) } return ecdsa.serializeSig(r, s) }, verify: function (hash, sig, pubkey) { var r,s if (Array.isArray(sig) || Buffer.isBuffer(sig)) { var obj = ecdsa.parseSig(sig) r = obj.r s = obj.s } else if ("object" === typeof sig && sig.r && sig.s) { r = sig.r s = sig.s } else { throw new Error("Invalid value for signature") } var Q if (pubkey instanceof ECPointFp) { Q = pubkey } else if (Array.isArray(pubkey) || Buffer.isBuffer(pubkey)) { Q = ECPointFp.decodeFrom(ecparams.getCurve(), pubkey) } else { throw new Error("Invalid format for pubkey value, must be byte array or ECPointFp") } var e = BigInteger.fromBuffer(hash) return ecdsa.verifyRaw(e, r, s, Q) }, verifyRaw: function (e, r, s, Q) { var n = ecparams.getN() var G = ecparams.getG() if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) { return false } if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) { return false } var c = s.modInverse(n) var u1 = e.multiply(c).mod(n) var u2 = r.multiply(c).mod(n) var point = G.multiplyTwo(u1, Q, u2) var v = point.getX().toBigInteger().mod(n) return v.equals(r) }, /** * Serialize a signature into DER format. * * Takes two BigIntegers representing r and s and returns a byte array. */ serializeSig: function (r, s) { var rBa = r.toByteArraySigned() var sBa = s.toByteArraySigned() var sequence = [] sequence.push(0x02); // INTEGER sequence.push(rBa.length) sequence = sequence.concat(rBa) sequence.push(0x02); // INTEGER sequence.push(sBa.length) sequence = sequence.concat(sBa) sequence.unshift(sequence.length) sequence.unshift(0x30); // SEQUENCE return sequence }, /** * Parses a buffer containing a DER-encoded signature. * * This function will return an object of the form: * * { * r: BigInteger, * s: BigInteger * } */ parseSig: function (buffer) { if (Array.isArray(buffer)) buffer = new Buffer(buffer) // FIXME: transitionary assert.equal(buffer.readUInt8(0), 0x30, 'Not a DER sequence') assert.equal(buffer.readUInt8(1), buffer.length - 2, 'Invalid sequence length') assert.equal(buffer.readUInt8(2), 0x02, 'Expected DER integer') var rLen = buffer.readUInt8(3) var rB = buffer.slice(4, 4 + rLen) var offset = 4 + rLen assert.equal(buffer.readUInt8(offset), 0x02, 'Expected a 2nd DER integer') var sLen = buffer.readUInt8(1 + offset) var sB = buffer.slice(2 + offset) return { r: BigInteger.fromByteArraySigned(rB), s: BigInteger.fromByteArraySigned(sB) } }, serializeSigCompact: function(r, s, i, compressed) { if (compressed) { i += 4 } i += 27 var buffer = new Buffer(65) buffer.writeUInt8(i, 0) r.toBuffer(32).copy(buffer, 1) s.toBuffer(32).copy(buffer, 33) return buffer }, parseSigCompact: function (buffer) { assert.equal(buffer.length, 65, 'Invalid signature length') var i = buffer.readUInt8(0) - 27 // At most 3 bits assert.equal(i, i & 7, 'Invalid signature type') var compressed = !!(i & 4) // Recovery param only i = i & 3 var r = BigInteger.fromBuffer(buffer.slice(1, 33)) var s = BigInteger.fromBuffer(buffer.slice(33)) return { r: r, s: s, i: i, compressed: compressed } }, /** * Recover a public key from a signature. * * See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public * Key Recovery Operation". * * http://www.secg.org/download/aid-780/sec1-v2.pdf */ recoverPubKey: function (r, s, hash, i) { assert.strictEqual(i & 3, i, 'The recovery param is more than two bits') // A set LSB signifies that the y-coordinate is odd // By reduction, the y-coordinate is even if it is clear var isYEven = !(i & 1) // The more significant bit specifies whether we should use the // first or second candidate key. var isSecondKey = i >> 1 var n = ecparams.getN() var G = ecparams.getG() var curve = ecparams.getCurve() var p = curve.getQ() var a = curve.getA().toBigInteger() var b = curve.getB().toBigInteger() // We precalculate (p + 1) / 4 where p is the field order if (!curve.P_OVER_FOUR) { curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2) } // 1.1 Compute x var x = isSecondKey ? r.add(n) : r // 1.3 Convert x to point var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p) var beta = alpha.modPow(curve.P_OVER_FOUR, p) // If beta is even, but y isn't, or vice versa, then convert it, // otherwise we're done and y == beta. var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta // 1.4 Check that nR isn't at infinity var R = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)) R.validate() // 1.5 Compute e from M var e = BigInteger.fromBuffer(hash) var eNeg = e.negate().mod(n) // 1.6 Compute Q = r^-1 (sR - eG) var rInv = r.modInverse(n) var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv) Q.validate() if (!ecdsa.verifyRaw(e, r, s, Q)) { throw new Error("Pubkey recovery unsuccessful") } return Q }, /** * Calculate pubkey extraction parameter. * * When extracting a pubkey from a signature, we have to * distinguish four different cases. Rather than putting this * burden on the verifier, Bitcoin includes a 2-bit value with the * signature. * * This function simply tries all four cases and returns the value * that resulted in a successful pubkey recovery. */ calcPubKeyRecoveryParam: function (origPubKey, r, s, hash) { for (var i = 0; i < 4; i++) { var pubKey = ecdsa.recoverPubKey(r, s, hash, i) if (pubKey.equals(origPubKey)) { return i } } throw new Error("Unable to find valid recovery factor") } } module.exports = ecdsa