You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
496 lines
13 KiB
496 lines
13 KiB
// Basic Javascript Elliptic Curve implementation
|
|
// Ported loosely from BouncyCastle's Java EC code
|
|
// Only Fp curves implemented for now
|
|
|
|
var assert = require('assert')
|
|
var BigInteger = require('bigi')
|
|
|
|
// constants
|
|
var TWO = BigInteger.valueOf(2)
|
|
var THREE = BigInteger.valueOf(3)
|
|
|
|
function ECFieldElementFp(q,x) {
|
|
this.x = x;
|
|
// TODO if(x.compareTo(q) >= 0) error
|
|
this.q = q;
|
|
}
|
|
|
|
function feFpEquals(other) {
|
|
if(other == this) return true;
|
|
return (this.q.equals(other.q) && this.x.equals(other.x));
|
|
}
|
|
|
|
function feFpToBigInteger() {
|
|
return this.x;
|
|
}
|
|
|
|
function feFpNegate() {
|
|
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q));
|
|
}
|
|
|
|
function feFpAdd(b) {
|
|
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
|
|
}
|
|
|
|
function feFpSubtract(b) {
|
|
return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
|
|
}
|
|
|
|
function feFpMultiply(b) {
|
|
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
|
|
}
|
|
|
|
function feFpSquare() {
|
|
return new ECFieldElementFp(this.q, this.x.square().mod(this.q));
|
|
}
|
|
|
|
function feFpDivide(b) {
|
|
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q));
|
|
}
|
|
|
|
ECFieldElementFp.prototype.equals = feFpEquals;
|
|
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger;
|
|
ECFieldElementFp.prototype.negate = feFpNegate;
|
|
ECFieldElementFp.prototype.add = feFpAdd;
|
|
ECFieldElementFp.prototype.subtract = feFpSubtract;
|
|
ECFieldElementFp.prototype.multiply = feFpMultiply;
|
|
ECFieldElementFp.prototype.square = feFpSquare;
|
|
ECFieldElementFp.prototype.divide = feFpDivide;
|
|
|
|
// ----------------
|
|
// ECPointFp
|
|
|
|
// constructor
|
|
function ECPointFp(curve,x,y,z) {
|
|
this.curve = curve;
|
|
this.x = x;
|
|
this.y = y;
|
|
// Projective coordinates: either zinv == null or z * zinv == 1
|
|
// z and zinv are just BigIntegers, not fieldElements
|
|
if(z == null) {
|
|
this.z = BigInteger.ONE;
|
|
}
|
|
else {
|
|
this.z = z;
|
|
}
|
|
this.zinv = null;
|
|
//TODO: compression flag
|
|
}
|
|
|
|
function pointFpGetX() {
|
|
if(this.zinv == null) {
|
|
this.zinv = this.z.modInverse(this.curve.q);
|
|
}
|
|
return this.curve.fromBigInteger(this.x.toBigInteger().multiply(this.zinv).mod(this.curve.q));
|
|
}
|
|
|
|
function pointFpGetY() {
|
|
if(this.zinv == null) {
|
|
this.zinv = this.z.modInverse(this.curve.q);
|
|
}
|
|
return this.curve.fromBigInteger(this.y.toBigInteger().multiply(this.zinv).mod(this.curve.q));
|
|
}
|
|
|
|
function pointFpEquals(other) {
|
|
if(other == this) return true;
|
|
if(this.isInfinity()) return other.isInfinity();
|
|
if(other.isInfinity()) return this.isInfinity();
|
|
var u, v;
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
|
if (u.signum() !== 0) return false;
|
|
// v = X2 * Z1 - X1 * Z2
|
|
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
|
return v.signum() === 0;
|
|
}
|
|
|
|
function pointFpIsInfinity() {
|
|
if ((this.x == null) && (this.y == null)) return true;
|
|
return this.z.signum() === 0 && this.y.toBigInteger().signum() !== 0;
|
|
}
|
|
|
|
function pointFpNegate() {
|
|
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z);
|
|
}
|
|
|
|
function pointFpAdd(b) {
|
|
if(this.isInfinity()) return b;
|
|
if(b.isInfinity()) return this;
|
|
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
|
// v = X2 * Z1 - X1 * Z2
|
|
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
|
|
|
if(v.signum() === 0) {
|
|
if(u.signum() === 0) {
|
|
return this.twice(); // this == b, so double
|
|
}
|
|
return this.curve.getInfinity(); // this = -b, so infinity
|
|
}
|
|
|
|
var x1 = this.x.toBigInteger();
|
|
var y1 = this.y.toBigInteger();
|
|
var x2 = b.x.toBigInteger();
|
|
var y2 = b.y.toBigInteger();
|
|
|
|
var v2 = v.square();
|
|
var v3 = v2.multiply(v);
|
|
var x1v2 = x1.multiply(v2);
|
|
var zu2 = u.square().multiply(this.z);
|
|
|
|
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
|
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
|
|
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
|
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q);
|
|
// z3 = v^3 * z1 * z2
|
|
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
|
|
|
|
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
|
}
|
|
|
|
function pointFpTwice() {
|
|
if(this.isInfinity()) return this;
|
|
if(this.y.toBigInteger().signum() === 0) return this.curve.getInfinity();
|
|
|
|
var x1 = this.x.toBigInteger();
|
|
var y1 = this.y.toBigInteger();
|
|
|
|
var y1z1 = y1.multiply(this.z);
|
|
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
|
|
var a = this.curve.a.toBigInteger();
|
|
|
|
// w = 3 * x1^2 + a * z1^2
|
|
var w = x1.square().multiply(THREE);
|
|
if(a.signum() !== 0) {
|
|
w = w.add(this.z.square().multiply(a));
|
|
}
|
|
w = w.mod(this.curve.q);
|
|
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
|
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q);
|
|
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
|
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.pow(3)).mod(this.curve.q);
|
|
// z3 = 8 * (y1 * z1)^3
|
|
var z3 = y1z1.pow(3).shiftLeft(3).mod(this.curve.q);
|
|
|
|
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
|
}
|
|
|
|
// Simple NAF (Non-Adjacent Form) multiplication algorithm
|
|
// TODO: modularize the multiplication algorithm
|
|
function pointFpMultiply(k) {
|
|
if(this.isInfinity()) return this;
|
|
if(k.signum() === 0) return this.curve.getInfinity()
|
|
|
|
var e = k;
|
|
var h = e.multiply(THREE)
|
|
|
|
var neg = this.negate();
|
|
var R = this;
|
|
|
|
var i;
|
|
for(i = h.bitLength() - 2; i > 0; --i) {
|
|
R = R.twice();
|
|
|
|
var hBit = h.testBit(i);
|
|
var eBit = e.testBit(i);
|
|
|
|
if (hBit != eBit) {
|
|
R = R.add(hBit ? this : neg);
|
|
}
|
|
}
|
|
|
|
return R;
|
|
}
|
|
|
|
// Compute this*j + x*k (simultaneous multiplication)
|
|
function pointFpMultiplyTwo(j,x,k) {
|
|
var i;
|
|
if(j.bitLength() > k.bitLength())
|
|
i = j.bitLength() - 1;
|
|
else
|
|
i = k.bitLength() - 1;
|
|
|
|
var R = this.curve.getInfinity();
|
|
var both = this.add(x);
|
|
while(i >= 0) {
|
|
R = R.twice();
|
|
if(j.testBit(i)) {
|
|
if(k.testBit(i)) {
|
|
R = R.add(both);
|
|
}
|
|
else {
|
|
R = R.add(this);
|
|
}
|
|
}
|
|
else {
|
|
if(k.testBit(i)) {
|
|
R = R.add(x);
|
|
}
|
|
}
|
|
--i;
|
|
}
|
|
|
|
return R;
|
|
}
|
|
|
|
ECPointFp.prototype.getX = pointFpGetX;
|
|
ECPointFp.prototype.getY = pointFpGetY;
|
|
ECPointFp.prototype.equals = pointFpEquals;
|
|
ECPointFp.prototype.isInfinity = pointFpIsInfinity;
|
|
ECPointFp.prototype.negate = pointFpNegate;
|
|
ECPointFp.prototype.add = pointFpAdd;
|
|
ECPointFp.prototype.twice = pointFpTwice;
|
|
ECPointFp.prototype.multiply = pointFpMultiply;
|
|
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo;
|
|
|
|
// ----------------
|
|
// ECCurveFp
|
|
|
|
// constructor
|
|
function ECCurveFp(q,a,b) {
|
|
this.q = q;
|
|
this.a = this.fromBigInteger(a);
|
|
this.b = this.fromBigInteger(b);
|
|
this.infinity = new ECPointFp(this, null, null);
|
|
}
|
|
|
|
function curveFpGetQ() {
|
|
return this.q;
|
|
}
|
|
|
|
function curveFpGetA() {
|
|
return this.a;
|
|
}
|
|
|
|
function curveFpGetB() {
|
|
return this.b;
|
|
}
|
|
|
|
function curveFpEquals(other) {
|
|
if(other == this) return true;
|
|
return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
|
|
}
|
|
|
|
function curveFpGetInfinity() {
|
|
return this.infinity;
|
|
}
|
|
|
|
function curveFpFromBigInteger(x) {
|
|
return new ECFieldElementFp(this.q, x);
|
|
}
|
|
|
|
ECCurveFp.prototype.getQ = curveFpGetQ;
|
|
ECCurveFp.prototype.getA = curveFpGetA;
|
|
ECCurveFp.prototype.getB = curveFpGetB;
|
|
ECCurveFp.prototype.equals = curveFpEquals;
|
|
ECCurveFp.prototype.getInfinity = curveFpGetInfinity;
|
|
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger;
|
|
|
|
// prepends 0 if bytes < len
|
|
// cuts off start if bytes > len
|
|
function integerToBytes(i, len) {
|
|
var bytes = i.toByteArrayUnsigned();
|
|
|
|
if (len < bytes.length) {
|
|
bytes = bytes.slice(bytes.length-len);
|
|
} else while (len > bytes.length) {
|
|
bytes.unshift(0);
|
|
}
|
|
|
|
return bytes;
|
|
};
|
|
|
|
ECFieldElementFp.prototype.getByteLength = function () {
|
|
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
|
|
};
|
|
|
|
ECPointFp.prototype.getEncoded = function(compressed) {
|
|
var x = this.getX().toBigInteger()
|
|
var y = this.getY().toBigInteger()
|
|
var buffer
|
|
|
|
// 0x02/0x03 | X
|
|
if (compressed) {
|
|
buffer = new Buffer(33)
|
|
buffer.writeUInt8(y.isEven() ? 0x02 : 0x03, 0)
|
|
|
|
// 0x04 | X | Y
|
|
} else {
|
|
buffer = new Buffer(65)
|
|
buffer.writeUInt8(0x04, 0)
|
|
|
|
y.toBuffer(32).copy(buffer, 33)
|
|
}
|
|
|
|
x.toBuffer(32).copy(buffer, 1)
|
|
|
|
return buffer
|
|
}
|
|
|
|
ECPointFp.decodeFrom = function (curve, buffer) {
|
|
var type = buffer.readUInt8(0)
|
|
var compressed = type !== 0x04
|
|
var x = BigInteger.fromBuffer(buffer.slice(1, 33))
|
|
var y
|
|
|
|
if (compressed) {
|
|
assert.equal(buffer.length, 33, 'Invalid sequence length')
|
|
assert(type === 0x02 || type === 0x03, 'Invalid sequence tag')
|
|
|
|
var isYEven = (type === 0x02)
|
|
var a = curve.getA().toBigInteger()
|
|
var b = curve.getB().toBigInteger()
|
|
var p = curve.getQ()
|
|
|
|
// We precalculate (p + 1) / 4 where p is the field order
|
|
if (!curve.P_OVER_FOUR) {
|
|
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2)
|
|
}
|
|
|
|
// Convert x to point
|
|
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p)
|
|
var beta = alpha.modPow(curve.P_OVER_FOUR, p)
|
|
|
|
// If beta is even, but y isn't, or vice versa, then convert it,
|
|
// otherwise we're done and y == beta.
|
|
y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta
|
|
|
|
} else {
|
|
assert.equal(buffer.length, 65, 'Invalid sequence length')
|
|
|
|
y = BigInteger.fromBuffer(buffer.slice(33))
|
|
}
|
|
|
|
var Q = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y))
|
|
|
|
return {
|
|
Q: Q,
|
|
compressed: compressed
|
|
}
|
|
}
|
|
|
|
ECPointFp.prototype.add2D = function (b) {
|
|
if(this.isInfinity()) return b;
|
|
if(b.isInfinity()) return this;
|
|
|
|
if (this.x.equals(b.x)) {
|
|
if (this.y.equals(b.y)) {
|
|
// this = b, i.e. this must be doubled
|
|
return this.twice();
|
|
}
|
|
// this = -b, i.e. the result is the point at infinity
|
|
return this.curve.getInfinity();
|
|
}
|
|
|
|
var x_x = b.x.subtract(this.x);
|
|
var y_y = b.y.subtract(this.y);
|
|
var gamma = y_y.divide(x_x);
|
|
|
|
var x3 = gamma.square().subtract(this.x).subtract(b.x);
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
return new ECPointFp(this.curve, x3, y3);
|
|
};
|
|
|
|
ECPointFp.prototype.twice2D = function () {
|
|
if (this.isInfinity()) return this;
|
|
if (this.y.toBigInteger().signum() === 0) {
|
|
// if y1 == 0, then (x1, y1) == (x1, -y1)
|
|
// and hence this = -this and thus 2(x1, y1) == infinity
|
|
return this.curve.getInfinity();
|
|
}
|
|
|
|
var FpTWO = this.curve.fromBigInteger(TWO);
|
|
var FpTHREE = this.curve.fromBigInteger(THREE)
|
|
var gamma = this.x.square().multiply(FpTHREE).add(this.curve.a).divide(this.y.multiply(FpTWO));
|
|
|
|
var x3 = gamma.square().subtract(this.x.multiply(FpTWO));
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
return new ECPointFp(this.curve, x3, y3);
|
|
};
|
|
|
|
ECPointFp.prototype.multiply2D = function (k) {
|
|
if(this.isInfinity()) return this;
|
|
if (k.signum() === 0) return this.curve.getInfinity()
|
|
|
|
var e = k;
|
|
var h = e.multiply(THREE)
|
|
|
|
var neg = this.negate();
|
|
var R = this;
|
|
|
|
var i;
|
|
for (i = h.bitLength() - 2; i > 0; --i) {
|
|
R = R.twice();
|
|
|
|
var hBit = h.testBit(i);
|
|
var eBit = e.testBit(i);
|
|
|
|
if (hBit != eBit) {
|
|
R = R.add2D(hBit ? this : neg);
|
|
}
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
ECPointFp.prototype.isOnCurve = function () {
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
var a = this.curve.getA().toBigInteger();
|
|
var b = this.curve.getB().toBigInteger();
|
|
var p = this.curve.getQ()
|
|
var lhs = y.square().mod(p)
|
|
var rhs = x.pow(3).add(a.multiply(x)).add(b).mod(p)
|
|
return lhs.equals(rhs);
|
|
};
|
|
|
|
ECPointFp.prototype.toString = function () {
|
|
return '('+this.getX().toBigInteger().toString()+','+
|
|
this.getY().toBigInteger().toString()+')';
|
|
};
|
|
|
|
/**
|
|
* Validate an elliptic curve point.
|
|
*
|
|
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
|
|
*/
|
|
ECPointFp.prototype.validate = function () {
|
|
var n = this.curve.getQ();
|
|
|
|
// Check Q != O
|
|
if (this.isInfinity()) {
|
|
throw new Error("Point is at infinity.");
|
|
}
|
|
|
|
// Check coordinate bounds
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
if (x.compareTo(BigInteger.ONE) < 0 ||
|
|
x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
throw new Error('x coordinate out of bounds');
|
|
}
|
|
if (y.compareTo(BigInteger.ONE) < 0 ||
|
|
y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
throw new Error('y coordinate out of bounds');
|
|
}
|
|
|
|
// Check y^2 = x^3 + ax + b (mod n)
|
|
if (!this.isOnCurve()) {
|
|
throw new Error("Point is not on the curve.");
|
|
}
|
|
|
|
// Check nQ = 0 (Q is a scalar multiple of G)
|
|
if (this.multiply(n).isInfinity()) {
|
|
// TODO: This check doesn't work - fix.
|
|
throw new Error("Point is not a scalar multiple of G.");
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
|
|
module.exports = ECCurveFp;
|
|
module.exports.ECPointFp = ECPointFp;
|
|
|