You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

419 lines
11 KiB

// Basic Javascript Elliptic Curve implementation
// Ported loosely from BouncyCastle's Java EC code
// Only Fp curves implemented for now
var assert = require('assert')
var BigInteger = require('bigi')
// constants
var THREE = BigInteger.valueOf(3)
function ECFieldElementFp(q,x) {
this.x = x
// TODO if (x.compareTo(q) >= 0) error
this.q = q
}
function feFpEquals(other) {
if (other == this) return true
return (this.q.equals(other.q) && this.x.equals(other.x))
}
function feFpToBigInteger() {
return this.x
}
function feFpNegate() {
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q))
}
function feFpAdd(b) {
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q))
}
function feFpSubtract(b) {
return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q))
}
function feFpMultiply(b) {
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q))
}
function feFpSquare() {
return new ECFieldElementFp(this.q, this.x.square().mod(this.q))
}
function feFpDivide(b) {
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q))
}
ECFieldElementFp.prototype.equals = feFpEquals
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger
ECFieldElementFp.prototype.negate = feFpNegate
ECFieldElementFp.prototype.add = feFpAdd
ECFieldElementFp.prototype.subtract = feFpSubtract
ECFieldElementFp.prototype.multiply = feFpMultiply
ECFieldElementFp.prototype.square = feFpSquare
ECFieldElementFp.prototype.divide = feFpDivide
// ----------------
// ECPointFp
// constructor
function ECPointFp(curve,x,y,z) {
this.curve = curve
this.x = x
this.y = y
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
this.z = (z == undefined) ? BigInteger.ONE : z
this.zinv = null
//TODO: compression flag
}
function pointFpGetX() {
if (this.zinv === null) {
this.zinv = this.z.modInverse(this.curve.q)
}
return this.curve.fromBigInteger(this.x.toBigInteger().multiply(this.zinv).mod(this.curve.q))
}
function pointFpGetY() {
if (this.zinv === null) {
this.zinv = this.z.modInverse(this.curve.q)
}
return this.curve.fromBigInteger(this.y.toBigInteger().multiply(this.zinv).mod(this.curve.q))
}
function pointFpEquals(other) {
if (other == this) return true
if (this.isInfinity()) return other.isInfinity()
if (other.isInfinity()) return this.isInfinity()
// u = Y2 * Z1 - Y1 * Z2
var u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q)
if (u.signum() !== 0) return false
// v = X2 * Z1 - X1 * Z2
var v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q)
return v.signum() === 0
}
function pointFpIsInfinity() {
if ((this.x === null) && (this.y === null)) return true
return this.z.signum() === 0 && this.y.toBigInteger().signum() !== 0
}
function pointFpNegate() {
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z)
}
function pointFpAdd(b) {
if (this.isInfinity()) return b
if (b.isInfinity()) return this
var x1 = this.x.toBigInteger()
var y1 = this.y.toBigInteger()
var x2 = b.x.toBigInteger()
var y2 = b.y.toBigInteger()
// u = Y2 * Z1 - Y1 * Z2
var u = y2.multiply(this.z).subtract(y1.multiply(b.z)).mod(this.curve.q)
// v = X2 * Z1 - X1 * Z2
var v = x2.multiply(this.z).subtract(x1.multiply(b.z)).mod(this.curve.q)
if (v.signum() === 0) {
if (u.signum() === 0) {
return this.twice() // this == b, so double
}
return this.curve.getInfinity() // this = -b, so infinity
}
var v2 = v.square()
var v3 = v2.multiply(v)
var x1v2 = x1.multiply(v2)
var zu2 = u.square().multiply(this.z)
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q)
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q)
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q)
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3)
}
function pointFpTwice() {
if (this.isInfinity()) return this
if (this.y.toBigInteger().signum() === 0) return this.curve.getInfinity()
var x1 = this.x.toBigInteger()
var y1 = this.y.toBigInteger()
var y1z1 = y1.multiply(this.z)
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q)
var a = this.curve.a.toBigInteger()
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE)
if (a.signum() !== 0) {
w = w.add(this.z.square().multiply(a))
}
w = w.mod(this.curve.q)
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q)
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.pow(3)).mod(this.curve.q)
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.pow(3).shiftLeft(3).mod(this.curve.q)
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3)
}
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
function pointFpMultiply(k) {
if (this.isInfinity()) return this
if (k.signum() === 0) return this.curve.getInfinity()
var e = k
var h = e.multiply(THREE)
var neg = this.negate()
var R = this
for (var i = h.bitLength() - 2; i > 0; --i) {
R = R.twice()
var hBit = h.testBit(i)
var eBit = e.testBit(i)
if (hBit != eBit) {
R = R.add(hBit ? this : neg)
}
}
return R
}
// Compute this*j + x*k (simultaneous multiplication)
function pointFpMultiplyTwo(j,x,k) {
var i
if (j.bitLength() > k.bitLength())
i = j.bitLength() - 1
else
i = k.bitLength() - 1
var R = this.curve.getInfinity()
var both = this.add(x)
while (i >= 0) {
R = R.twice()
if (j.testBit(i)) {
if (k.testBit(i)) {
R = R.add(both)
}
else {
R = R.add(this)
}
}
else {
if (k.testBit(i)) {
R = R.add(x)
}
}
--i
}
return R
}
ECPointFp.prototype.getX = pointFpGetX
ECPointFp.prototype.getY = pointFpGetY
ECPointFp.prototype.equals = pointFpEquals
ECPointFp.prototype.isInfinity = pointFpIsInfinity
ECPointFp.prototype.negate = pointFpNegate
ECPointFp.prototype.add = pointFpAdd
ECPointFp.prototype.twice = pointFpTwice
ECPointFp.prototype.multiply = pointFpMultiply
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo
// ----------------
// ECCurveFp
// constructor
function ECCurveFp(q,a,b) {
this.q = q
this.a = this.fromBigInteger(a)
this.b = this.fromBigInteger(b)
this.infinity = new ECPointFp(this, null, null)
}
function curveFpGetQ() {
return this.q
}
function curveFpGetA() {
return this.a
}
function curveFpGetB() {
return this.b
}
function curveFpEquals(other) {
if (other == this) return true
return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b))
}
function curveFpGetInfinity() {
return this.infinity
}
function curveFpFromBigInteger(x) {
return new ECFieldElementFp(this.q, x)
}
ECCurveFp.prototype.getQ = curveFpGetQ
ECCurveFp.prototype.getA = curveFpGetA
ECCurveFp.prototype.getB = curveFpGetB
ECCurveFp.prototype.equals = curveFpEquals
ECCurveFp.prototype.getInfinity = curveFpGetInfinity
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger
ECFieldElementFp.prototype.getByteLength = function () {
return Math.floor((this.toBigInteger().bitLength() + 7) / 8)
}
ECPointFp.prototype.getEncoded = function(compressed) {
var x = this.getX().toBigInteger()
var y = this.getY().toBigInteger()
var buffer
// 0x02/0x03 | X
if (compressed) {
buffer = new Buffer(33)
buffer.writeUInt8(y.isEven() ? 0x02 : 0x03, 0)
// 0x04 | X | Y
} else {
buffer = new Buffer(65)
buffer.writeUInt8(0x04, 0)
y.toBuffer(32).copy(buffer, 33)
}
x.toBuffer(32).copy(buffer, 1)
return buffer
}
ECPointFp.decodeFrom = function (curve, buffer) {
var type = buffer.readUInt8(0)
var compressed = type !== 0x04
var x = BigInteger.fromBuffer(buffer.slice(1, 33))
var y
if (compressed) {
assert.equal(buffer.length, 33, 'Invalid sequence length')
assert(type === 0x02 || type === 0x03, 'Invalid sequence tag')
var isYEven = (type === 0x02)
var a = curve.getA().toBigInteger()
var b = curve.getB().toBigInteger()
var p = curve.getQ()
// We precalculate (p + 1) / 4 where p is the field order
if (!curve.P_OVER_FOUR) {
curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2)
}
// Convert x to point
var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p)
var beta = alpha.modPow(curve.P_OVER_FOUR, p)
// If beta is even, but y isn't, or vice versa, then convert it,
// otherwise we're done and y == beta.
y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta
} else {
assert.equal(buffer.length, 65, 'Invalid sequence length')
y = BigInteger.fromBuffer(buffer.slice(33))
}
var Q = new ECPointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y))
return {
Q: Q,
compressed: compressed
}
}
ECPointFp.prototype.isOnCurve = function () {
var x = this.getX().toBigInteger()
var y = this.getY().toBigInteger()
var a = this.curve.getA().toBigInteger()
var b = this.curve.getB().toBigInteger()
var p = this.curve.getQ()
var lhs = y.square().mod(p)
var rhs = x.pow(3).add(a.multiply(x)).add(b).mod(p)
return lhs.equals(rhs)
}
ECPointFp.prototype.toString = function () {
return '('+this.getX().toBigInteger().toString()+','+
this.getY().toBigInteger().toString()+')'
}
/**
* Validate an elliptic curve point.
*
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
*/
ECPointFp.prototype.validate = function () {
var n = this.curve.getQ()
// Check Q != O
if (this.isInfinity()) {
throw new Error("Point is at infinity.")
}
// Check coordinate bounds
var x = this.getX().toBigInteger()
var y = this.getY().toBigInteger()
if (x.compareTo(BigInteger.ONE) < 0 ||
x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('x coordinate out of bounds')
}
if (y.compareTo(BigInteger.ONE) < 0 ||
y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
throw new Error('y coordinate out of bounds')
}
// Check y^2 = x^3 + ax + b (mod n)
if (!this.isOnCurve()) {
throw new Error("Point is not on the curve.")
}
// Check nQ = 0 (Q is a scalar multiple of G)
if (this.multiply(n).isInfinity()) {
// TODO: This check doesn't work - fix.
throw new Error("Point is not a scalar multiple of G.")
}
return true
}
module.exports = ECCurveFp
module.exports.ECPointFp = ECPointFp