You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
6.3 KiB
183 lines
6.3 KiB
var assert = require('assert')
|
|
var async = require('async')
|
|
var bigi = require('bigi')
|
|
var bitcoin = require('../../')
|
|
var blockchain = new (require('cb-helloblock'))('bitcoin')
|
|
var crypto = require('crypto')
|
|
|
|
describe('bitcoinjs-lib (crypto)', function() {
|
|
it('can generate a single-key stealth address', function() {
|
|
var receiver = bitcoin.ECKey.fromWIF('5KYZdUEo39z3FPrtuX2QbbwGnNP5zTd7yyr2SC1j299sBCnWjss')
|
|
|
|
// XXX: ephemeral, must be random (and secret to sender) to preserve privacy
|
|
var sender = bitcoin.ECKey.fromWIF('Kxr9tQED9H44gCmp6HAdmemAzU3n84H3dGkuWTKvE23JgHMW8gct')
|
|
|
|
var G = bitcoin.ECKey.curve.G
|
|
var d = receiver.d // secret (receiver only)
|
|
var Q = receiver.pub.Q // shared
|
|
|
|
var e = sender.d // secret (sender only)
|
|
var P = sender.pub.Q // shared
|
|
|
|
// derived shared secret
|
|
var eQ = Q.multiply(e) // sender
|
|
var dP = P.multiply(d) // receiver
|
|
assert.deepEqual(eQ.getEncoded(), dP.getEncoded())
|
|
|
|
var c = bigi.fromBuffer(bitcoin.crypto.sha256(eQ.getEncoded()))
|
|
var cG = G.multiply(c)
|
|
|
|
// derived public key
|
|
var QprimeS = Q.add(cG)
|
|
var QprimeR = G.multiply(d.add(c))
|
|
assert.deepEqual(QprimeR.getEncoded(), QprimeS.getEncoded())
|
|
|
|
// derived shared-secret address
|
|
var address = new bitcoin.ECPubKey(QprimeS).getAddress().toString()
|
|
|
|
assert.equal(address, '1EwCNJNZM5q58YPPTnjR1H5BvYRNeyZi47')
|
|
})
|
|
|
|
// TODO
|
|
it.skip('can generate a dual-key stealth address', function() {})
|
|
|
|
it('can recover a parent private key from the parent\'s public key and a derived non-hardened child private key', function() {
|
|
function recoverParent(master, child) {
|
|
assert(!master.privKey, 'You already have the parent private key')
|
|
assert(child.privKey, 'Missing child private key')
|
|
|
|
var curve = bitcoin.ECKey.curve
|
|
var QP = master.pubKey.toBuffer()
|
|
var QP64 = QP.toString('base64')
|
|
var d1 = child.privKey.d
|
|
var d2
|
|
var indexBuffer = new Buffer(4)
|
|
|
|
// search index space until we find it
|
|
for (var i = 0; i < bitcoin.HDNode.HIGHEST_BIT; ++i) {
|
|
indexBuffer.writeUInt32BE(i, 0)
|
|
|
|
// calculate I
|
|
var data = Buffer.concat([QP, indexBuffer])
|
|
var I = crypto.createHmac('sha512', master.chainCode).update(data).digest()
|
|
var IL = I.slice(0, 32)
|
|
var pIL = bigi.fromBuffer(IL)
|
|
|
|
// See hdnode.js:273 to understand
|
|
d2 = d1.subtract(pIL).mod(curve.n)
|
|
|
|
var Qp = new bitcoin.ECKey(d2, true).pub.toBuffer()
|
|
if (Qp.toString('base64') === QP64) break
|
|
}
|
|
|
|
var node = new bitcoin.HDNode(d2, master.chainCode, master.network)
|
|
node.depth = master.depth
|
|
node.index = master.index
|
|
node.masterFingerprint = master.masterFingerprint
|
|
return node
|
|
}
|
|
|
|
var seed = crypto.randomBytes(32)
|
|
var master = bitcoin.HDNode.fromSeedBuffer(seed)
|
|
var child = master.derive(6) // m/6
|
|
|
|
// now for the recovery
|
|
var neuteredMaster = master.neutered()
|
|
var recovered = recoverParent(neuteredMaster, child)
|
|
assert.equal(recovered.toBase58(), master.toBase58())
|
|
})
|
|
|
|
it('can recover a private key from duplicate R values', function() {
|
|
var inputs = [
|
|
{
|
|
txId: "f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50",
|
|
vout: 0
|
|
},
|
|
{
|
|
txId: "f4c16475f2a6e9c602e4a287f9db3040e319eb9ece74761a4b84bc820fbeef50",
|
|
vout: 1
|
|
}
|
|
]
|
|
|
|
var txIds = inputs.map(function(x) { return x.txId })
|
|
|
|
// first retrieve the relevant transactions
|
|
blockchain.transactions.get(txIds, function(err, results) {
|
|
assert.ifError(err)
|
|
|
|
var transactions = {}
|
|
results.forEach(function(tx) {
|
|
transactions[tx.txId] = bitcoin.Transaction.fromHex(tx.txHex)
|
|
})
|
|
|
|
var tasks = []
|
|
|
|
// now we need to collect/transform a bit of data from the selected inputs
|
|
inputs.forEach(function(input) {
|
|
var transaction = transactions[input.txId]
|
|
var script = transaction.ins[input.vout].script
|
|
assert(bitcoin.scripts.isPubKeyHashInput(script), 'Expected pubKeyHash script')
|
|
|
|
var prevOutTxId = bitcoin.bufferutils.reverse(transaction.ins[input.vout].hash).toString('hex')
|
|
var prevVout = transaction.ins[input.vout].index
|
|
|
|
tasks.push(function(callback) {
|
|
blockchain.transactions.get(prevOutTxId, function(err, result) {
|
|
if (err) return callback(err)
|
|
|
|
var prevOut = bitcoin.Transaction.fromHex(result.txHex)
|
|
var prevOutScript = prevOut.outs[prevVout].script
|
|
|
|
var scriptSignature = bitcoin.ECSignature.parseScriptSignature(script.chunks[0])
|
|
var publicKey = bitcoin.ECPubKey.fromBuffer(script.chunks[1])
|
|
|
|
var m = transaction.hashForSignature(input.vout, prevOutScript, scriptSignature.hashType)
|
|
assert(publicKey.verify(m, scriptSignature.signature), 'Invalid m')
|
|
|
|
// store the required information
|
|
input.signature = scriptSignature.signature
|
|
input.z = bigi.fromBuffer(m)
|
|
|
|
return callback()
|
|
})
|
|
})
|
|
})
|
|
|
|
// finally, run the tasks, then on to the math
|
|
async.parallel(tasks, function(err) {
|
|
if (err) throw err
|
|
var n = bitcoin.ECKey.curve.n
|
|
|
|
for (var i = 0; i < inputs.length; ++i) {
|
|
for (var j = i + 1; j < inputs.length; ++j) {
|
|
var inputA = inputs[i]
|
|
var inputB = inputs[j]
|
|
|
|
// enforce matching r values
|
|
assert.equal(inputA.signature.r.toString(), inputB.signature.r.toString())
|
|
var r = inputA.signature.r
|
|
var rInv = r.modInverse(n)
|
|
|
|
var s1 = inputA.signature.s
|
|
var s2 = inputB.signature.s
|
|
var z1 = inputA.z
|
|
var z2 = inputB.z
|
|
|
|
var zz = z1.subtract(z2).mod(n)
|
|
var ss = s1.subtract(s2).mod(n)
|
|
|
|
// k = (z1 - z2) / (s1 - s2)
|
|
// d1 = (s1 * k - z1) / r
|
|
// d2 = (s2 * k - z2) / r
|
|
var k = zz.multiply(ss.modInverse(n)).mod(n)
|
|
var d1 = (( s1.multiply(k).mod(n) ).subtract(z1).mod(n) ).multiply(rInv).mod(n)
|
|
var d2 = (( s2.multiply(k).mod(n) ).subtract(z2).mod(n) ).multiply(rInv).mod(n)
|
|
|
|
// enforce matching private keys
|
|
assert.equal(d1.toString(), d2.toString())
|
|
}
|
|
}
|
|
})
|
|
})
|
|
})
|
|
})
|
|
|