You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

199 lines
7.6 KiB

10 years ago
# bitcore-wallet-service
10 years ago
10 years ago
[![Build Status](https://img.shields.io/travis/bitpay/bitcore-wallet-service.svg?branch=master&style=flat-square)](https://travis-ci.org/bitpay/bitcore-wallet-service)
10 years ago
[![Coverage Status](https://coveralls.io/repos/bitpay/bitcore-wallet-service/badge.svg?branch=master)](https://coveralls.io/r/bitpay/bitcore-wallet-service?branch=master)
10 years ago
A Multisig HD Wallet Service, with minimum server trust.
10 years ago
# Quick Guide
10 years ago
``` shell
# Install dependencies
npm install
10 years ago
# Start the server
npm start
10 years ago
10 years ago
# Try the CLI interface
10 years ago
cd bit-wallet
# Create a 2-of-2 wallet (john.dat is the file where the wallet critical data will be stored, add -t for testnet)
10 years ago
./bit create 2-2 john
10 years ago
* Secret to share:
JevjEwaaxW6gdAZjqgWcimL525DR8zQsAXf4cscWDa8u1qKTN5eFGSFssuSvT1WySu4YYLYMUPT
10 years ago
./bit status
10 years ago
# Use -h or BIT_HOST to setup the base URL for your server.
10 years ago
# Use -f or BIT_FILE to setup the wallet data file
10 years ago
# Join the wallet from other copayer
./bit -f pete.dat join JevjEwaaxW6gdAZjqgWcimL525DR8zQsAXf4cscWDa8u1qKTN5eFGSFssuSvT1WySu4YYLYMUPT
10 years ago
export BIT_FILE=pete.dat
10 years ago
./bit -f pete.dat status
# Generate addresses to receive money
./bit address
* New Address 3xxxxxx
# Check your balance
10 years ago
./bit balance
10 years ago
# Spend coins. Amount can be specified in btc, bit or sat (default)
./bit send 1xxxxx 100bit "100 bits to mother"
10 years ago
# You can use 100bit or 0.00001btc or 10000sat. (Set BIT_UNIT to btc/sat/bit to select output unit).
10 years ago
10 years ago
# List pending TX Proposals
10 years ago
./bit status
10 years ago
# Sign or reject TXs from other copayers
10 years ago
./bit -f pete.dat reject <id>
./bit -f pete.dat sign <id>
# List transaction history
a few minutes ago: => sent 100 bit ["100 bits to mother" by pete] (1 confirmations)
a day ago: <= received 1,400 bit (48 confirmations)
a day ago: <= received 300 bit (52 confirmations)
10 years ago
# List all commands:
./bit --help
10 years ago
10 years ago
10 years ago
```
10 years ago
# Local data
Copayers store their extended private key and their copayers' extended public key locally. We call this the ``Wallet Critical Data``. Extended private keys are never sent to the server.
10 years ago
# Password protection
Local data can be encrypted by the bit-wallet. Use the `-n` parameter to define the access level permited for no password operation. Available access levels are: `none` (password is required for everything, localfile is fully encrypted) `readonly`, `readwrite` and `full` (password is not ever required, local file is fully unencrypted) .
10 years ago
``` shell
10 years ago
# encrypts everything by default
10 years ago
bit create myWallet 2-3 --nopasswd none
Password:
10 years ago
# allows readonly operations without password (encrypts xpriv, and leave readonlySigningKey unencrypted)
10 years ago
bit create myWallet 2-3 -p --nopasswd readonly
10 years ago
# allows readwrite operations without password (only encrypts xpriv)
10 years ago
bit create myWallet 2-3 -p --nopasswd readwrite
```
10 years ago
10 years ago
# Advanced Operation
10 years ago
## Mobility
You can safely access a wallet from different devices. Just copy the wallet file (`bit.dat` by default). If you need to reduce the file to the minimum (for example to fit it on a QR) or change its access level (by removing certain data on it), see `export` in the following section.
10 years ago
10 years ago
## Export, with different access levels
It is possible to export a wallet with restricted access level. The levels are:
10 years ago
```
10 years ago
readonly : allows to read wallet data: balance, tx proposals
readwrite: + allows to create addresses and unsigned tx prposals
full : + allows sign tx prposals
10 years ago
```
10 years ago
`readonly` will only export the Wallet's Extended PublicKeys, and only the derived private key required for signing 'GET' request (readonly) to the server. `readwrite` will add the derived private key required for signing all other requests (as POST) so readwrite access will be possible. And `full` will export also the Extended Private Key, which is necesary for signing wallet's transactions. `bit import` can handle any for the levels correctly.
10 years ago
``` shell
10 years ago
# full access
10 years ago
bit export -o wallet.dat
10 years ago
# readonly access
10 years ago
bit export -o wallet.dat --access readonly
10 years ago
# readwrite access (can create addresses, propose transactions, reject TX, but does not have signing keys)
10 years ago
10 years ago
# Import the wallet , with giveng access level
10 years ago
bit import wallet.dat
10 years ago
# Export also support QR output:
bit export --qr
10 years ago
```
## If the wallet needs to be migrated to another server, after importing the wallet, use the `bit-recreate` command
10 years ago
10 years ago
## Export / Import with a new given password (TO Be Done)
10 years ago
``` shell
10 years ago
bit export -o output.dat -e
bit import output.dat
10 years ago
```
10 years ago
10 years ago
# Airgapped Operation
## WARNING: THIS IS STILL WIP ##
10 years ago
Air gapped (non connected) devices are supported. This setup can be useful if maximum security is needed, to prevent private keys from being compromised. In this setup, a device is installed without network access, and transactions are signed off-line. Transactions can be pulled from the server using a `proxy` device, then downloaded to a pendrive to be moved to the air-gapped device, signed there, and then moved back the `proxy` device to be sent back to the server. Note that Private keys are generated off-line in the airgapped device.
10 years ago
10 years ago
``` shell
10 years ago
# On the Air-gapped device
airgapped$ bit genkey
airgapped$ bit export -o toProxy --access readwrite #(or --readonly if proxy won't be allowed to propose transactions)
10 years ago
# On the proxy machine
10 years ago
proxy$ bit import toProxy
proxy$ bit join secret # Or bit create
proxy$ bit address # Only if readwrite access was granted
10 years ago
proxy$ bit balance
10 years ago
# Export pending transaction to be signed offline
10 years ago
proxy$ bit txproposals -o txproposals.dat
10 years ago
## Back to air-gapped device
10 years ago
# Check tx proposals:
airgapped$ bit txproposals -i txproposals.dat
# First time txproposals is running on the air gapped devices, the public keys of the copayers will be imported from the txproposals archive. That information is exported automatically by the proxy machine, and encrypted copayer's xpriv derivatives.
# Sign them
airgapped$ bit sign -i txproposals.dat -o txproposals-signed.dat
10 years ago
10 years ago
## Back to proxy machine
10 years ago
# Send signatures to the server
proxy$ bit sign -i txproposals-signed.dat
```
10 years ago
10 years ago
# Security Considerations
* Private keys are never sent to the server. Copayers store them locally.
* Extended public keys are stored on the server. This allows the server to easily check wallet balance, send offline notifications to copayers, etc.
* During wallet creation, the initial copayer creates a wallet secret that contains a private key. All copayers need to prove they have the secret by signing their information with this private key when joining the wallet. The secret should be shared using secured channels.
10 years ago
## All server responses are verified:
* Addresses and change addresses are derived independently and locally by the copayers from their local data.
* TX Proposals templates are signed by copayers and verified by others, so the server cannot create or tamper with them.
10 years ago
10 years ago
## Notes
* A copayer could join the wallet more than once, and there is no mechanism to prevent this. Copayers should use the command 'confirm' to check other copayer's identity.
10 years ago
## In case the server is compromised
* It could be possible to see past (and future) wallet's transactions.
* It is not possible to spend wallet funds, since private keys are never sent nor stored at the server
* It is not possible to tamper with tx proposals or wallet addresses since they are computed and verified by copayers
* Copayers could switch to another server using their local data (see `recreate` command). In this case only the wallet extended data will be lost (pending and past transaction proposals, some copayer metadata).
10 years ago
10 years ago
10 years ago
# Server API
## create a wallet
POST `/v1/wallets`
## join a wallet
POST `/v1/wallets/:id/copayers`
...
[To be completed, see expressapp.js]
10 years ago