extern crate gcc; use std::env; use std::fs; use std::path::PathBuf; fn main() { let out = PathBuf::from(env::var_os("OUT_DIR").unwrap()); fs::remove_dir_all(&out).unwrap(); fs::create_dir(&out).unwrap(); gcc::Config::new() .file("src/foo.c") .define("FOO", None) .define("BAR", Some("1")) .compile("libfoo.a"); gcc::Config::new() .file("src/bar1.c") .file("src/bar2.c") .include("src/include") .compile("libbar.a"); let target = std::env::var("TARGET").unwrap(); let file = target.split("-").next().unwrap(); let file = format!("src/{}.{}", file, if target.contains("msvc") {"asm"} else {"S"}); gcc::Config::new() .file(file) .compile("libasm.a"); gcc::Config::new() .file("src/baz.cpp") .cpp(true) .compile("libbaz.a"); if target.contains("windows") { gcc::Config::new() .file("src/windows.c") .compile("libwindows.a"); } // Test that the `windows_registry` module will set PATH by looking for // nmake which runs vanilla cl, and then also test it after we remove all // the relevant env vars from our own process. if target.contains("msvc") { let out = out.join("tmp"); fs::create_dir(&out).unwrap(); println!("nmake 1"); let status = gcc::windows_registry::find(&target, "nmake.exe").unwrap() .arg("/fsrc/NMakefile") .env("OUT_DIR", &out) .status() .unwrap(); assert!(status.success()); fs::remove_dir_all(&out).unwrap(); fs::create_dir(&out).unwrap(); env::remove_var("PATH"); env::remove_var("VCINSTALLDIR"); env::remove_var("INCLUDE"); env::remove_var("LIB"); println!("nmake 2"); let status = gcc::windows_registry::find(&target, "nmake.exe").unwrap() .arg("/fsrc/NMakefile") .env("OUT_DIR", &out) .status() .unwrap(); assert!(status.success()); println!("cargo:rustc-link-lib=msvc"); println!("cargo:rustc-link-search={}", out.display()); } // This tests whether we can build a library but not link it to the main // crate. The test module will do its own linking. gcc::Config::new().cargo_metadata(false) .file("src/opt_linkage.c") .compile("libOptLinkage.a"); }