|
|
|
#!/usr/bin/env python
|
|
|
|
#
|
|
|
|
# Electrum - lightweight Bitcoin client
|
|
|
|
# Copyright (C) 2011 thomasv@gitorious
|
|
|
|
#
|
|
|
|
# This program is free software: you can redistribute it and/or modify
|
|
|
|
# it under the terms of the GNU General Public License as published by
|
|
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
|
|
# (at your option) any later version.
|
|
|
|
#
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
# GNU General Public License for more details.
|
|
|
|
#
|
|
|
|
# You should have received a copy of the GNU General Public License
|
|
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
|
|
|
|
import hashlib, base64, ecdsa, re
|
|
|
|
|
|
|
|
|
|
|
|
def rev_hex(s):
|
|
|
|
return s.decode('hex')[::-1].encode('hex')
|
|
|
|
|
|
|
|
def int_to_hex(i, length=1):
|
|
|
|
s = hex(i)[2:].rstrip('L')
|
|
|
|
s = "0"*(2*length - len(s)) + s
|
|
|
|
return rev_hex(s)
|
|
|
|
|
|
|
|
def var_int(i):
|
|
|
|
if i<0xfd:
|
|
|
|
return int_to_hex(i)
|
|
|
|
elif i<=0xffff:
|
|
|
|
return "fd"+int_to_hex(i,2)
|
|
|
|
elif i<=0xffffffff:
|
|
|
|
return "fe"+int_to_hex(i,4)
|
|
|
|
else:
|
|
|
|
return "ff"+int_to_hex(i,8)
|
|
|
|
|
|
|
|
|
|
|
|
Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest()
|
|
|
|
hash_encode = lambda x: x[::-1].encode('hex')
|
|
|
|
hash_decode = lambda x: x.decode('hex')[::-1]
|
|
|
|
|
|
|
|
|
|
|
|
# pywallet openssl private key implementation
|
|
|
|
|
|
|
|
def i2d_ECPrivateKey(pkey, compressed=False):
|
|
|
|
if compressed:
|
|
|
|
key = '3081d30201010420' + \
|
|
|
|
'%064x' % pkey.secret + \
|
|
|
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
|
|
|
|
'%064x' % _p + \
|
|
|
|
'3006040100040107042102' + \
|
|
|
|
'%064x' % _Gx + \
|
|
|
|
'022100' + \
|
|
|
|
'%064x' % _r + \
|
|
|
|
'020101a124032200'
|
|
|
|
else:
|
|
|
|
key = '308201130201010420' + \
|
|
|
|
'%064x' % pkey.secret + \
|
|
|
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
|
|
|
|
'%064x' % _p + \
|
|
|
|
'3006040100040107044104' + \
|
|
|
|
'%064x' % _Gx + \
|
|
|
|
'%064x' % _Gy + \
|
|
|
|
'022100' + \
|
|
|
|
'%064x' % _r + \
|
|
|
|
'020101a144034200'
|
|
|
|
|
|
|
|
return key.decode('hex') + i2o_ECPublicKey(pkey, compressed)
|
|
|
|
|
|
|
|
def i2o_ECPublicKey(pkey, compressed=False):
|
|
|
|
# public keys are 65 bytes long (520 bits)
|
|
|
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
|
|
|
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
|
|
|
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
|
|
|
|
if compressed:
|
|
|
|
if pkey.pubkey.point.y() & 1:
|
|
|
|
key = '03' + '%064x' % pkey.pubkey.point.x()
|
|
|
|
else:
|
|
|
|
key = '02' + '%064x' % pkey.pubkey.point.x()
|
|
|
|
else:
|
|
|
|
key = '04' + \
|
|
|
|
'%064x' % pkey.pubkey.point.x() + \
|
|
|
|
'%064x' % pkey.pubkey.point.y()
|
|
|
|
|
|
|
|
return key.decode('hex')
|
|
|
|
|
|
|
|
# end pywallet openssl private key implementation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
############ functions from pywallet #####################
|
|
|
|
|
|
|
|
addrtype = 0
|
|
|
|
|
|
|
|
def hash_160(public_key):
|
|
|
|
try:
|
|
|
|
md = hashlib.new('ripemd160')
|
|
|
|
md.update(hashlib.sha256(public_key).digest())
|
|
|
|
return md.digest()
|
|
|
|
except:
|
|
|
|
import ripemd
|
|
|
|
md = ripemd.new(hashlib.sha256(public_key).digest())
|
|
|
|
return md.digest()
|
|
|
|
|
|
|
|
|
|
|
|
def public_key_to_bc_address(public_key):
|
|
|
|
h160 = hash_160(public_key)
|
|
|
|
return hash_160_to_bc_address(h160)
|
|
|
|
|
|
|
|
def hash_160_to_bc_address(h160):
|
|
|
|
vh160 = chr(addrtype) + h160
|
|
|
|
h = Hash(vh160)
|
|
|
|
addr = vh160 + h[0:4]
|
|
|
|
return b58encode(addr)
|
|
|
|
|
|
|
|
def bc_address_to_hash_160(addr):
|
|
|
|
bytes = b58decode(addr, 25)
|
|
|
|
return bytes[1:21]
|
|
|
|
|
|
|
|
def encode_point(pubkey, compressed=False):
|
|
|
|
order = generator_secp256k1.order()
|
|
|
|
p = pubkey.pubkey.point
|
|
|
|
x_str = ecdsa.util.number_to_string(p.x(), order)
|
|
|
|
y_str = ecdsa.util.number_to_string(p.y(), order)
|
|
|
|
if compressed:
|
|
|
|
return chr(2 + (p.y() & 1)) + x_str
|
|
|
|
else:
|
|
|
|
return chr(4) + pubkey.to_string() #x_str + y_str
|
|
|
|
|
|
|
|
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
|
|
|
|
__b58base = len(__b58chars)
|
|
|
|
|
|
|
|
def b58encode(v):
|
|
|
|
""" encode v, which is a string of bytes, to base58."""
|
|
|
|
|
|
|
|
long_value = 0L
|
|
|
|
for (i, c) in enumerate(v[::-1]):
|
|
|
|
long_value += (256**i) * ord(c)
|
|
|
|
|
|
|
|
result = ''
|
|
|
|
while long_value >= __b58base:
|
|
|
|
div, mod = divmod(long_value, __b58base)
|
|
|
|
result = __b58chars[mod] + result
|
|
|
|
long_value = div
|
|
|
|
result = __b58chars[long_value] + result
|
|
|
|
|
|
|
|
# Bitcoin does a little leading-zero-compression:
|
|
|
|
# leading 0-bytes in the input become leading-1s
|
|
|
|
nPad = 0
|
|
|
|
for c in v:
|
|
|
|
if c == '\0': nPad += 1
|
|
|
|
else: break
|
|
|
|
|
|
|
|
return (__b58chars[0]*nPad) + result
|
|
|
|
|
|
|
|
def b58decode(v, length):
|
|
|
|
""" decode v into a string of len bytes."""
|
|
|
|
long_value = 0L
|
|
|
|
for (i, c) in enumerate(v[::-1]):
|
|
|
|
long_value += __b58chars.find(c) * (__b58base**i)
|
|
|
|
|
|
|
|
result = ''
|
|
|
|
while long_value >= 256:
|
|
|
|
div, mod = divmod(long_value, 256)
|
|
|
|
result = chr(mod) + result
|
|
|
|
long_value = div
|
|
|
|
result = chr(long_value) + result
|
|
|
|
|
|
|
|
nPad = 0
|
|
|
|
for c in v:
|
|
|
|
if c == __b58chars[0]: nPad += 1
|
|
|
|
else: break
|
|
|
|
|
|
|
|
result = chr(0)*nPad + result
|
|
|
|
if length is not None and len(result) != length:
|
|
|
|
return None
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def EncodeBase58Check(vchIn):
|
|
|
|
hash = Hash(vchIn)
|
|
|
|
return b58encode(vchIn + hash[0:4])
|
|
|
|
|
|
|
|
def DecodeBase58Check(psz):
|
|
|
|
vchRet = b58decode(psz, None)
|
|
|
|
key = vchRet[0:-4]
|
|
|
|
csum = vchRet[-4:]
|
|
|
|
hash = Hash(key)
|
|
|
|
cs32 = hash[0:4]
|
|
|
|
if cs32 != csum:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return key
|
|
|
|
|
|
|
|
def PrivKeyToSecret(privkey):
|
|
|
|
return privkey[9:9+32]
|
|
|
|
|
|
|
|
def SecretToASecret(secret, compressed=False):
|
|
|
|
vchIn = chr((addrtype+128)&255) + secret
|
|
|
|
if compressed: vchIn += '\01'
|
|
|
|
return EncodeBase58Check(vchIn)
|
|
|
|
|
|
|
|
def ASecretToSecret(key):
|
|
|
|
vch = DecodeBase58Check(key)
|
|
|
|
if vch and vch[0] == chr((addrtype+128)&255):
|
|
|
|
return vch[1:]
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
def regenerate_key(sec):
|
|
|
|
b = ASecretToSecret(sec)
|
|
|
|
if not b:
|
|
|
|
return False
|
|
|
|
b = b[0:32]
|
|
|
|
secret = int('0x' + b.encode('hex'), 16)
|
|
|
|
return EC_KEY(secret)
|
|
|
|
|
|
|
|
def GetPubKey(pkey, compressed=False):
|
|
|
|
return i2o_ECPublicKey(pkey, compressed)
|
|
|
|
|
|
|
|
def GetPrivKey(pkey, compressed=False):
|
|
|
|
return i2d_ECPrivateKey(pkey, compressed)
|
|
|
|
|
|
|
|
def GetSecret(pkey):
|
|
|
|
return ('%064x' % pkey.secret).decode('hex')
|
|
|
|
|
|
|
|
def is_compressed(sec):
|
|
|
|
b = ASecretToSecret(sec)
|
|
|
|
return len(b) == 33
|
|
|
|
|
|
|
|
########### end pywallet functions #######################
|
|
|
|
|
|
|
|
# secp256k1, http://www.oid-info.com/get/1.3.132.0.10
|
|
|
|
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
|
|
|
|
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
|
|
|
|
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
|
|
|
|
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
|
|
|
|
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
|
|
|
|
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
|
|
|
|
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b )
|
|
|
|
generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
|
|
|
|
oid_secp256k1 = (1,3,132,0,10)
|
|
|
|
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 )
|
|
|
|
|
|
|
|
class EC_KEY(object):
|
|
|
|
def __init__( self, secret ):
|
|
|
|
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
|
|
|
|
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
|
|
|
|
self.secret = secret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def filter(s):
|
|
|
|
out = re.sub('( [^\n]*|)\n','',s)
|
|
|
|
out = out.replace(' ','')
|
|
|
|
out = out.replace('\n','')
|
|
|
|
return out
|
|
|
|
|
|
|
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
|
|
|
|
def raw_tx( inputs, outputs, for_sig = None ):
|
|
|
|
s = int_to_hex(1,4) + ' version\n'
|
|
|
|
s += var_int( len(inputs) ) + ' number of inputs\n'
|
|
|
|
for i in range(len(inputs)):
|
|
|
|
_, _, p_hash, p_index, p_script, pubkey, sig = inputs[i]
|
|
|
|
s += p_hash.decode('hex')[::-1].encode('hex') + ' prev hash\n'
|
|
|
|
s += int_to_hex(p_index,4) + ' prev index\n'
|
|
|
|
if for_sig is None:
|
|
|
|
sig = sig + chr(1) # hashtype
|
|
|
|
script = int_to_hex( len(sig)) + ' push %d bytes\n'%len(sig)
|
|
|
|
script += sig.encode('hex') + ' sig\n'
|
|
|
|
script += int_to_hex( len(pubkey)) + ' push %d bytes\n'%len(pubkey)
|
|
|
|
script += pubkey.encode('hex') + ' pubkey\n'
|
|
|
|
elif for_sig==i:
|
|
|
|
script = p_script + ' scriptsig \n'
|
|
|
|
else:
|
|
|
|
script=''
|
|
|
|
s += var_int( len(filter(script))/2 ) + ' script length \n'
|
|
|
|
s += script
|
|
|
|
s += "ffffffff" + ' sequence\n'
|
|
|
|
s += var_int( len(outputs) ) + ' number of outputs\n'
|
|
|
|
for output in outputs:
|
|
|
|
addr, amount = output
|
|
|
|
s += int_to_hex( amount, 8) + ' amount: %d\n'%amount
|
|
|
|
script = '76a9' # op_dup, op_hash_160
|
|
|
|
script += '14' # push 0x14 bytes
|
|
|
|
script += bc_address_to_hash_160(addr).encode('hex')
|
|
|
|
script += '88ac' # op_equalverify, op_checksig
|
|
|
|
s += var_int( len(filter(script))/2 ) + ' script length \n'
|
|
|
|
s += script + ' script \n'
|
|
|
|
s += int_to_hex(0,4) # lock time
|
|
|
|
if for_sig is not None: s += int_to_hex(1, 4) # hash type
|
|
|
|
return s
|
|
|
|
|
|
|
|
|