You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
400 lines
14 KiB
400 lines
14 KiB
13 years ago
|
## ripemd.py - pure Python implementation of the RIPEMD-160 algorithm.
|
||
|
## Bjorn Edstrom <be@bjrn.se> 16 december 2007.
|
||
|
##
|
||
|
## Copyrights
|
||
|
## ==========
|
||
|
##
|
||
|
## This code is a derived from an implementation by Markus Friedl which is
|
||
|
## subject to the following license. This Python implementation is not
|
||
|
## subject to any other license.
|
||
|
##
|
||
|
##/*
|
||
|
## * Copyright (c) 2001 Markus Friedl. All rights reserved.
|
||
|
## *
|
||
|
## * Redistribution and use in source and binary forms, with or without
|
||
|
## * modification, are permitted provided that the following conditions
|
||
|
## * are met:
|
||
|
## * 1. Redistributions of source code must retain the above copyright
|
||
|
## * notice, this list of conditions and the following disclaimer.
|
||
|
## * 2. Redistributions in binary form must reproduce the above copyright
|
||
|
## * notice, this list of conditions and the following disclaimer in the
|
||
|
## * documentation and/or other materials provided with the distribution.
|
||
|
## *
|
||
|
## * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
|
## * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
|
## * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
|
## * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
## * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
## * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
## * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
## * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
## * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
## * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
## */
|
||
|
##/*
|
||
|
## * Preneel, Bosselaers, Dobbertin, "The Cryptographic Hash Function RIPEMD-160",
|
||
|
## * RSA Laboratories, CryptoBytes, Volume 3, Number 2, Autumn 1997,
|
||
|
## * ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf
|
||
|
## */
|
||
|
|
||
|
try:
|
||
|
import psyco
|
||
|
psyco.full()
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
#block_size = 1
|
||
|
digest_size = 20
|
||
|
digestsize = 20
|
||
|
|
||
|
class RIPEMD160:
|
||
|
"""Return a new RIPEMD160 object. An optional string argument
|
||
|
may be provided; if present, this string will be automatically
|
||
|
hashed."""
|
||
|
|
||
|
def __init__(self, arg=None):
|
||
|
self.ctx = RMDContext()
|
||
|
if arg:
|
||
|
self.update(arg)
|
||
|
self.dig = None
|
||
|
|
||
|
def update(self, arg):
|
||
|
"""update(arg)"""
|
||
|
RMD160Update(self.ctx, arg, len(arg))
|
||
|
self.dig = None
|
||
|
|
||
|
def digest(self):
|
||
|
"""digest()"""
|
||
|
if self.dig:
|
||
|
return self.dig
|
||
|
ctx = self.ctx.copy()
|
||
|
self.dig = RMD160Final(self.ctx)
|
||
|
self.ctx = ctx
|
||
|
return self.dig
|
||
|
|
||
|
def hexdigest(self):
|
||
|
"""hexdigest()"""
|
||
|
dig = self.digest()
|
||
|
hex_digest = ''
|
||
|
for d in dig:
|
||
|
hex_digest += '%02x' % ord(d)
|
||
|
return hex_digest
|
||
|
|
||
|
def copy(self):
|
||
|
"""copy()"""
|
||
|
import copy
|
||
|
return copy.deepcopy(self)
|
||
|
|
||
|
|
||
|
|
||
|
def new(arg=None):
|
||
|
"""Return a new RIPEMD160 object. An optional string argument
|
||
|
may be provided; if present, this string will be automatically
|
||
|
hashed."""
|
||
|
return RIPEMD160(arg)
|
||
|
|
||
|
|
||
|
|
||
|
#
|
||
|
# Private.
|
||
|
#
|
||
|
|
||
|
class RMDContext:
|
||
|
def __init__(self):
|
||
|
self.state = [0x67452301, 0xEFCDAB89, 0x98BADCFE,
|
||
|
0x10325476, 0xC3D2E1F0] # uint32
|
||
|
self.count = 0 # uint64
|
||
|
self.buffer = [0]*64 # uchar
|
||
|
def copy(self):
|
||
|
ctx = RMDContext()
|
||
|
ctx.state = self.state[:]
|
||
|
ctx.count = self.count
|
||
|
ctx.buffer = self.buffer[:]
|
||
|
return ctx
|
||
|
|
||
|
K0 = 0x00000000
|
||
|
K1 = 0x5A827999
|
||
|
K2 = 0x6ED9EBA1
|
||
|
K3 = 0x8F1BBCDC
|
||
|
K4 = 0xA953FD4E
|
||
|
|
||
|
KK0 = 0x50A28BE6
|
||
|
KK1 = 0x5C4DD124
|
||
|
KK2 = 0x6D703EF3
|
||
|
KK3 = 0x7A6D76E9
|
||
|
KK4 = 0x00000000
|
||
|
|
||
|
def ROL(n, x):
|
||
|
return ((x << n) & 0xffffffff) | (x >> (32 - n))
|
||
|
|
||
|
def F0(x, y, z):
|
||
|
return x ^ y ^ z
|
||
|
|
||
|
def F1(x, y, z):
|
||
|
return (x & y) | (((~x) % 0x100000000) & z)
|
||
|
|
||
|
def F2(x, y, z):
|
||
|
return (x | ((~y) % 0x100000000)) ^ z
|
||
|
|
||
|
def F3(x, y, z):
|
||
|
return (x & z) | (((~z) % 0x100000000) & y)
|
||
|
|
||
|
def F4(x, y, z):
|
||
|
return x ^ (y | ((~z) % 0x100000000))
|
||
|
|
||
|
def R(a, b, c, d, e, Fj, Kj, sj, rj, X):
|
||
|
a = ROL(sj, (a + Fj(b, c, d) + X[rj] + Kj) % 0x100000000) + e
|
||
|
c = ROL(10, c)
|
||
|
return a % 0x100000000, c
|
||
|
|
||
|
PADDING = [0x80] + [0]*63
|
||
|
|
||
|
import sys
|
||
|
import struct
|
||
|
|
||
|
def RMD160Transform(state, block): #uint32 state[5], uchar block[64]
|
||
|
x = [0]*16
|
||
|
if sys.byteorder == 'little':
|
||
|
x = struct.unpack('<16L', ''.join([chr(x) for x in block[0:64]]))
|
||
|
else:
|
||
|
raise "Error!!"
|
||
|
a = state[0]
|
||
|
b = state[1]
|
||
|
c = state[2]
|
||
|
d = state[3]
|
||
|
e = state[4]
|
||
|
|
||
|
#/* Round 1 */
|
||
|
a, c = R(a, b, c, d, e, F0, K0, 11, 0, x);
|
||
|
e, b = R(e, a, b, c, d, F0, K0, 14, 1, x);
|
||
|
d, a = R(d, e, a, b, c, F0, K0, 15, 2, x);
|
||
|
c, e = R(c, d, e, a, b, F0, K0, 12, 3, x);
|
||
|
b, d = R(b, c, d, e, a, F0, K0, 5, 4, x);
|
||
|
a, c = R(a, b, c, d, e, F0, K0, 8, 5, x);
|
||
|
e, b = R(e, a, b, c, d, F0, K0, 7, 6, x);
|
||
|
d, a = R(d, e, a, b, c, F0, K0, 9, 7, x);
|
||
|
c, e = R(c, d, e, a, b, F0, K0, 11, 8, x);
|
||
|
b, d = R(b, c, d, e, a, F0, K0, 13, 9, x);
|
||
|
a, c = R(a, b, c, d, e, F0, K0, 14, 10, x);
|
||
|
e, b = R(e, a, b, c, d, F0, K0, 15, 11, x);
|
||
|
d, a = R(d, e, a, b, c, F0, K0, 6, 12, x);
|
||
|
c, e = R(c, d, e, a, b, F0, K0, 7, 13, x);
|
||
|
b, d = R(b, c, d, e, a, F0, K0, 9, 14, x);
|
||
|
a, c = R(a, b, c, d, e, F0, K0, 8, 15, x); #/* #15 */
|
||
|
#/* Round 2 */
|
||
|
e, b = R(e, a, b, c, d, F1, K1, 7, 7, x);
|
||
|
d, a = R(d, e, a, b, c, F1, K1, 6, 4, x);
|
||
|
c, e = R(c, d, e, a, b, F1, K1, 8, 13, x);
|
||
|
b, d = R(b, c, d, e, a, F1, K1, 13, 1, x);
|
||
|
a, c = R(a, b, c, d, e, F1, K1, 11, 10, x);
|
||
|
e, b = R(e, a, b, c, d, F1, K1, 9, 6, x);
|
||
|
d, a = R(d, e, a, b, c, F1, K1, 7, 15, x);
|
||
|
c, e = R(c, d, e, a, b, F1, K1, 15, 3, x);
|
||
|
b, d = R(b, c, d, e, a, F1, K1, 7, 12, x);
|
||
|
a, c = R(a, b, c, d, e, F1, K1, 12, 0, x);
|
||
|
e, b = R(e, a, b, c, d, F1, K1, 15, 9, x);
|
||
|
d, a = R(d, e, a, b, c, F1, K1, 9, 5, x);
|
||
|
c, e = R(c, d, e, a, b, F1, K1, 11, 2, x);
|
||
|
b, d = R(b, c, d, e, a, F1, K1, 7, 14, x);
|
||
|
a, c = R(a, b, c, d, e, F1, K1, 13, 11, x);
|
||
|
e, b = R(e, a, b, c, d, F1, K1, 12, 8, x); #/* #31 */
|
||
|
#/* Round 3 */
|
||
|
d, a = R(d, e, a, b, c, F2, K2, 11, 3, x);
|
||
|
c, e = R(c, d, e, a, b, F2, K2, 13, 10, x);
|
||
|
b, d = R(b, c, d, e, a, F2, K2, 6, 14, x);
|
||
|
a, c = R(a, b, c, d, e, F2, K2, 7, 4, x);
|
||
|
e, b = R(e, a, b, c, d, F2, K2, 14, 9, x);
|
||
|
d, a = R(d, e, a, b, c, F2, K2, 9, 15, x);
|
||
|
c, e = R(c, d, e, a, b, F2, K2, 13, 8, x);
|
||
|
b, d = R(b, c, d, e, a, F2, K2, 15, 1, x);
|
||
|
a, c = R(a, b, c, d, e, F2, K2, 14, 2, x);
|
||
|
e, b = R(e, a, b, c, d, F2, K2, 8, 7, x);
|
||
|
d, a = R(d, e, a, b, c, F2, K2, 13, 0, x);
|
||
|
c, e = R(c, d, e, a, b, F2, K2, 6, 6, x);
|
||
|
b, d = R(b, c, d, e, a, F2, K2, 5, 13, x);
|
||
|
a, c = R(a, b, c, d, e, F2, K2, 12, 11, x);
|
||
|
e, b = R(e, a, b, c, d, F2, K2, 7, 5, x);
|
||
|
d, a = R(d, e, a, b, c, F2, K2, 5, 12, x); #/* #47 */
|
||
|
#/* Round 4 */
|
||
|
c, e = R(c, d, e, a, b, F3, K3, 11, 1, x);
|
||
|
b, d = R(b, c, d, e, a, F3, K3, 12, 9, x);
|
||
|
a, c = R(a, b, c, d, e, F3, K3, 14, 11, x);
|
||
|
e, b = R(e, a, b, c, d, F3, K3, 15, 10, x);
|
||
|
d, a = R(d, e, a, b, c, F3, K3, 14, 0, x);
|
||
|
c, e = R(c, d, e, a, b, F3, K3, 15, 8, x);
|
||
|
b, d = R(b, c, d, e, a, F3, K3, 9, 12, x);
|
||
|
a, c = R(a, b, c, d, e, F3, K3, 8, 4, x);
|
||
|
e, b = R(e, a, b, c, d, F3, K3, 9, 13, x);
|
||
|
d, a = R(d, e, a, b, c, F3, K3, 14, 3, x);
|
||
|
c, e = R(c, d, e, a, b, F3, K3, 5, 7, x);
|
||
|
b, d = R(b, c, d, e, a, F3, K3, 6, 15, x);
|
||
|
a, c = R(a, b, c, d, e, F3, K3, 8, 14, x);
|
||
|
e, b = R(e, a, b, c, d, F3, K3, 6, 5, x);
|
||
|
d, a = R(d, e, a, b, c, F3, K3, 5, 6, x);
|
||
|
c, e = R(c, d, e, a, b, F3, K3, 12, 2, x); #/* #63 */
|
||
|
#/* Round 5 */
|
||
|
b, d = R(b, c, d, e, a, F4, K4, 9, 4, x);
|
||
|
a, c = R(a, b, c, d, e, F4, K4, 15, 0, x);
|
||
|
e, b = R(e, a, b, c, d, F4, K4, 5, 5, x);
|
||
|
d, a = R(d, e, a, b, c, F4, K4, 11, 9, x);
|
||
|
c, e = R(c, d, e, a, b, F4, K4, 6, 7, x);
|
||
|
b, d = R(b, c, d, e, a, F4, K4, 8, 12, x);
|
||
|
a, c = R(a, b, c, d, e, F4, K4, 13, 2, x);
|
||
|
e, b = R(e, a, b, c, d, F4, K4, 12, 10, x);
|
||
|
d, a = R(d, e, a, b, c, F4, K4, 5, 14, x);
|
||
|
c, e = R(c, d, e, a, b, F4, K4, 12, 1, x);
|
||
|
b, d = R(b, c, d, e, a, F4, K4, 13, 3, x);
|
||
|
a, c = R(a, b, c, d, e, F4, K4, 14, 8, x);
|
||
|
e, b = R(e, a, b, c, d, F4, K4, 11, 11, x);
|
||
|
d, a = R(d, e, a, b, c, F4, K4, 8, 6, x);
|
||
|
c, e = R(c, d, e, a, b, F4, K4, 5, 15, x);
|
||
|
b, d = R(b, c, d, e, a, F4, K4, 6, 13, x); #/* #79 */
|
||
|
|
||
|
aa = a;
|
||
|
bb = b;
|
||
|
cc = c;
|
||
|
dd = d;
|
||
|
ee = e;
|
||
|
|
||
|
a = state[0]
|
||
|
b = state[1]
|
||
|
c = state[2]
|
||
|
d = state[3]
|
||
|
e = state[4]
|
||
|
|
||
|
#/* Parallel round 1 */
|
||
|
a, c = R(a, b, c, d, e, F4, KK0, 8, 5, x)
|
||
|
e, b = R(e, a, b, c, d, F4, KK0, 9, 14, x)
|
||
|
d, a = R(d, e, a, b, c, F4, KK0, 9, 7, x)
|
||
|
c, e = R(c, d, e, a, b, F4, KK0, 11, 0, x)
|
||
|
b, d = R(b, c, d, e, a, F4, KK0, 13, 9, x)
|
||
|
a, c = R(a, b, c, d, e, F4, KK0, 15, 2, x)
|
||
|
e, b = R(e, a, b, c, d, F4, KK0, 15, 11, x)
|
||
|
d, a = R(d, e, a, b, c, F4, KK0, 5, 4, x)
|
||
|
c, e = R(c, d, e, a, b, F4, KK0, 7, 13, x)
|
||
|
b, d = R(b, c, d, e, a, F4, KK0, 7, 6, x)
|
||
|
a, c = R(a, b, c, d, e, F4, KK0, 8, 15, x)
|
||
|
e, b = R(e, a, b, c, d, F4, KK0, 11, 8, x)
|
||
|
d, a = R(d, e, a, b, c, F4, KK0, 14, 1, x)
|
||
|
c, e = R(c, d, e, a, b, F4, KK0, 14, 10, x)
|
||
|
b, d = R(b, c, d, e, a, F4, KK0, 12, 3, x)
|
||
|
a, c = R(a, b, c, d, e, F4, KK0, 6, 12, x) #/* #15 */
|
||
|
#/* Parallel round 2 */
|
||
|
e, b = R(e, a, b, c, d, F3, KK1, 9, 6, x)
|
||
|
d, a = R(d, e, a, b, c, F3, KK1, 13, 11, x)
|
||
|
c, e = R(c, d, e, a, b, F3, KK1, 15, 3, x)
|
||
|
b, d = R(b, c, d, e, a, F3, KK1, 7, 7, x)
|
||
|
a, c = R(a, b, c, d, e, F3, KK1, 12, 0, x)
|
||
|
e, b = R(e, a, b, c, d, F3, KK1, 8, 13, x)
|
||
|
d, a = R(d, e, a, b, c, F3, KK1, 9, 5, x)
|
||
|
c, e = R(c, d, e, a, b, F3, KK1, 11, 10, x)
|
||
|
b, d = R(b, c, d, e, a, F3, KK1, 7, 14, x)
|
||
|
a, c = R(a, b, c, d, e, F3, KK1, 7, 15, x)
|
||
|
e, b = R(e, a, b, c, d, F3, KK1, 12, 8, x)
|
||
|
d, a = R(d, e, a, b, c, F3, KK1, 7, 12, x)
|
||
|
c, e = R(c, d, e, a, b, F3, KK1, 6, 4, x)
|
||
|
b, d = R(b, c, d, e, a, F3, KK1, 15, 9, x)
|
||
|
a, c = R(a, b, c, d, e, F3, KK1, 13, 1, x)
|
||
|
e, b = R(e, a, b, c, d, F3, KK1, 11, 2, x) #/* #31 */
|
||
|
#/* Parallel round 3 */
|
||
|
d, a = R(d, e, a, b, c, F2, KK2, 9, 15, x)
|
||
|
c, e = R(c, d, e, a, b, F2, KK2, 7, 5, x)
|
||
|
b, d = R(b, c, d, e, a, F2, KK2, 15, 1, x)
|
||
|
a, c = R(a, b, c, d, e, F2, KK2, 11, 3, x)
|
||
|
e, b = R(e, a, b, c, d, F2, KK2, 8, 7, x)
|
||
|
d, a = R(d, e, a, b, c, F2, KK2, 6, 14, x)
|
||
|
c, e = R(c, d, e, a, b, F2, KK2, 6, 6, x)
|
||
|
b, d = R(b, c, d, e, a, F2, KK2, 14, 9, x)
|
||
|
a, c = R(a, b, c, d, e, F2, KK2, 12, 11, x)
|
||
|
e, b = R(e, a, b, c, d, F2, KK2, 13, 8, x)
|
||
|
d, a = R(d, e, a, b, c, F2, KK2, 5, 12, x)
|
||
|
c, e = R(c, d, e, a, b, F2, KK2, 14, 2, x)
|
||
|
b, d = R(b, c, d, e, a, F2, KK2, 13, 10, x)
|
||
|
a, c = R(a, b, c, d, e, F2, KK2, 13, 0, x)
|
||
|
e, b = R(e, a, b, c, d, F2, KK2, 7, 4, x)
|
||
|
d, a = R(d, e, a, b, c, F2, KK2, 5, 13, x) #/* #47 */
|
||
|
#/* Parallel round 4 */
|
||
|
c, e = R(c, d, e, a, b, F1, KK3, 15, 8, x)
|
||
|
b, d = R(b, c, d, e, a, F1, KK3, 5, 6, x)
|
||
|
a, c = R(a, b, c, d, e, F1, KK3, 8, 4, x)
|
||
|
e, b = R(e, a, b, c, d, F1, KK3, 11, 1, x)
|
||
|
d, a = R(d, e, a, b, c, F1, KK3, 14, 3, x)
|
||
|
c, e = R(c, d, e, a, b, F1, KK3, 14, 11, x)
|
||
|
b, d = R(b, c, d, e, a, F1, KK3, 6, 15, x)
|
||
|
a, c = R(a, b, c, d, e, F1, KK3, 14, 0, x)
|
||
|
e, b = R(e, a, b, c, d, F1, KK3, 6, 5, x)
|
||
|
d, a = R(d, e, a, b, c, F1, KK3, 9, 12, x)
|
||
|
c, e = R(c, d, e, a, b, F1, KK3, 12, 2, x)
|
||
|
b, d = R(b, c, d, e, a, F1, KK3, 9, 13, x)
|
||
|
a, c = R(a, b, c, d, e, F1, KK3, 12, 9, x)
|
||
|
e, b = R(e, a, b, c, d, F1, KK3, 5, 7, x)
|
||
|
d, a = R(d, e, a, b, c, F1, KK3, 15, 10, x)
|
||
|
c, e = R(c, d, e, a, b, F1, KK3, 8, 14, x) #/* #63 */
|
||
|
#/* Parallel round 5 */
|
||
|
b, d = R(b, c, d, e, a, F0, KK4, 8, 12, x)
|
||
|
a, c = R(a, b, c, d, e, F0, KK4, 5, 15, x)
|
||
|
e, b = R(e, a, b, c, d, F0, KK4, 12, 10, x)
|
||
|
d, a = R(d, e, a, b, c, F0, KK4, 9, 4, x)
|
||
|
c, e = R(c, d, e, a, b, F0, KK4, 12, 1, x)
|
||
|
b, d = R(b, c, d, e, a, F0, KK4, 5, 5, x)
|
||
|
a, c = R(a, b, c, d, e, F0, KK4, 14, 8, x)
|
||
|
e, b = R(e, a, b, c, d, F0, KK4, 6, 7, x)
|
||
|
d, a = R(d, e, a, b, c, F0, KK4, 8, 6, x)
|
||
|
c, e = R(c, d, e, a, b, F0, KK4, 13, 2, x)
|
||
|
b, d = R(b, c, d, e, a, F0, KK4, 6, 13, x)
|
||
|
a, c = R(a, b, c, d, e, F0, KK4, 5, 14, x)
|
||
|
e, b = R(e, a, b, c, d, F0, KK4, 15, 0, x)
|
||
|
d, a = R(d, e, a, b, c, F0, KK4, 13, 3, x)
|
||
|
c, e = R(c, d, e, a, b, F0, KK4, 11, 9, x)
|
||
|
b, d = R(b, c, d, e, a, F0, KK4, 11, 11, x) #/* #79 */
|
||
|
|
||
|
t = (state[1] + cc + d) % 0x100000000;
|
||
|
state[1] = (state[2] + dd + e) % 0x100000000;
|
||
|
state[2] = (state[3] + ee + a) % 0x100000000;
|
||
|
state[3] = (state[4] + aa + b) % 0x100000000;
|
||
|
state[4] = (state[0] + bb + c) % 0x100000000;
|
||
|
state[0] = t % 0x100000000;
|
||
|
|
||
|
pass
|
||
|
|
||
|
|
||
|
def RMD160Update(ctx, inp, inplen):
|
||
|
if type(inp) == str:
|
||
|
inp = [ord(i)&0xff for i in inp]
|
||
|
|
||
|
have = (ctx.count / 8) % 64
|
||
|
need = 64 - have
|
||
|
ctx.count += 8 * inplen
|
||
|
off = 0
|
||
|
if inplen >= need:
|
||
|
if have:
|
||
|
for i in xrange(need):
|
||
|
ctx.buffer[have+i] = inp[i]
|
||
|
RMD160Transform(ctx.state, ctx.buffer)
|
||
|
off = need
|
||
|
have = 0
|
||
|
while off + 64 <= inplen:
|
||
|
RMD160Transform(ctx.state, inp[off:]) #<---
|
||
|
off += 64
|
||
|
if off < inplen:
|
||
|
# memcpy(ctx->buffer + have, input+off, len-off);
|
||
|
for i in xrange(inplen - off):
|
||
|
ctx.buffer[have+i] = inp[off+i]
|
||
|
|
||
|
def RMD160Final(ctx):
|
||
|
size = struct.pack("<Q", ctx.count)
|
||
|
padlen = 64 - ((ctx.count / 8) % 64)
|
||
|
if padlen < 1+8:
|
||
|
padlen += 64
|
||
|
RMD160Update(ctx, PADDING, padlen-8)
|
||
|
RMD160Update(ctx, size, 8)
|
||
|
return struct.pack("<5L", *ctx.state)
|
||
|
|
||
|
|
||
|
assert '37f332f68db77bd9d7edd4969571ad671cf9dd3b' == \
|
||
|
new('The quick brown fox jumps over the lazy dog').hexdigest()
|
||
|
assert '132072df690933835eb8b6ad0b77e7b6f14acad7' == \
|
||
|
new('The quick brown fox jumps over the lazy cog').hexdigest()
|
||
|
assert '9c1185a5c5e9fc54612808977ee8f548b2258d31' == \
|
||
|
new('').hexdigest()
|