You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

552 lines
17 KiB

9 years ago
#!/usr/bin/env python
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2015 Thomas Voegtlin
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# This module uses functions from TLSLite (public domain)
#
# TLSLite Authors:
# Trevor Perrin
# Martin von Loewis - python 3 port
# Yngve Pettersen (ported by Paul Sokolovsky) - TLS 1.2
#
"""Pure-Python RSA implementation."""
8 years ago
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
8 years ago
from __future__ import unicode_literals
import six
import os
import math
import base64
import binascii
import hashlib
8 years ago
from .pem import *
def SHA1(x):
return hashlib.sha1(x).digest()
# **************************************************************************
# PRNG Functions
# **************************************************************************
# Check that os.urandom works
import zlib
length = len(zlib.compress(os.urandom(1000)))
assert(length > 900)
def getRandomBytes(howMany):
b = bytearray(os.urandom(howMany))
assert(len(b) == howMany)
return b
prngName = "os.urandom"
# **************************************************************************
# Converter Functions
# **************************************************************************
def bytesToNumber(b):
total = 0
multiplier = 1
for count in range(len(b)-1, -1, -1):
byte = b[count]
total += multiplier * byte
multiplier *= 256
return total
def numberToByteArray(n, howManyBytes=None):
"""Convert an integer into a bytearray, zero-pad to howManyBytes.
The returned bytearray may be smaller than howManyBytes, but will
not be larger. The returned bytearray will contain a big-endian
encoding of the input integer (n).
"""
if howManyBytes == None:
howManyBytes = numBytes(n)
b = bytearray(howManyBytes)
for count in range(howManyBytes-1, -1, -1):
b[count] = int(n % 256)
n >>= 8
return b
def mpiToNumber(mpi): #mpi is an openssl-format bignum string
if (ord(mpi[4]) & 0x80) !=0: #Make sure this is a positive number
raise AssertionError()
b = bytearray(mpi[4:])
return bytesToNumber(b)
def numberToMPI(n):
b = numberToByteArray(n)
ext = 0
#If the high-order bit is going to be set,
#add an extra byte of zeros
if (numBits(n) & 0x7)==0:
ext = 1
length = numBytes(n) + ext
b = bytearray(4+ext) + b
b[0] = (length >> 24) & 0xFF
b[1] = (length >> 16) & 0xFF
b[2] = (length >> 8) & 0xFF
b[3] = length & 0xFF
return bytes(b)
# **************************************************************************
# Misc. Utility Functions
# **************************************************************************
def numBits(n):
if n==0:
return 0
s = "%x" % n
return ((len(s)-1)*4) + \
{'0':0, '1':1, '2':2, '3':2,
'4':3, '5':3, '6':3, '7':3,
'8':4, '9':4, 'a':4, 'b':4,
'c':4, 'd':4, 'e':4, 'f':4,
}[s[0]]
return int(math.floor(math.log(n, 2))+1)
def numBytes(n):
if n==0:
return 0
bits = numBits(n)
return int(math.ceil(bits / 8.0))
# **************************************************************************
# Big Number Math
# **************************************************************************
def getRandomNumber(low, high):
if low >= high:
raise AssertionError()
howManyBits = numBits(high)
howManyBytes = numBytes(high)
lastBits = howManyBits % 8
while 1:
bytes = getRandomBytes(howManyBytes)
if lastBits:
bytes[0] = bytes[0] % (1 << lastBits)
n = bytesToNumber(bytes)
if n >= low and n < high:
return n
def gcd(a,b):
a, b = max(a,b), min(a,b)
while b:
a, b = b, a % b
return a
def lcm(a, b):
return (a * b) // gcd(a, b)
#Returns inverse of a mod b, zero if none
#Uses Extended Euclidean Algorithm
def invMod(a, b):
c, d = a, b
uc, ud = 1, 0
while c != 0:
q = d // c
c, d = d-(q*c), c
uc, ud = ud - (q * uc), uc
if d == 1:
return ud % b
return 0
def powMod(base, power, modulus):
if power < 0:
result = pow(base, power*-1, modulus)
result = invMod(result, modulus)
return result
else:
return pow(base, power, modulus)
#Pre-calculate a sieve of the ~100 primes < 1000:
def makeSieve(n):
sieve = list(range(n))
for count in range(2, int(math.sqrt(n))+1):
if sieve[count] == 0:
continue
x = sieve[count] * 2
while x < len(sieve):
sieve[x] = 0
x += sieve[count]
sieve = [x for x in sieve[2:] if x]
return sieve
sieve = makeSieve(1000)
def isPrime(n, iterations=5, display=False):
#Trial division with sieve
for x in sieve:
if x >= n: return True
if n % x == 0: return False
#Passed trial division, proceed to Rabin-Miller
#Rabin-Miller implemented per Ferguson & Schneier
#Compute s, t for Rabin-Miller
if display: print("*", end=' ')
s, t = n-1, 0
while s % 2 == 0:
s, t = s//2, t+1
#Repeat Rabin-Miller x times
a = 2 #Use 2 as a base for first iteration speedup, per HAC
for count in range(iterations):
v = powMod(a, s, n)
if v==1:
continue
i = 0
while v != n-1:
if i == t-1:
return False
else:
v, i = powMod(v, 2, n), i+1
a = getRandomNumber(2, n)
return True
def getRandomPrime(bits, display=False):
if bits < 10:
raise AssertionError()
#The 1.5 ensures the 2 MSBs are set
#Thus, when used for p,q in RSA, n will have its MSB set
#
#Since 30 is lcm(2,3,5), we'll set our test numbers to
#29 % 30 and keep them there
low = ((2 ** (bits-1)) * 3) // 2
high = 2 ** bits - 30
p = getRandomNumber(low, high)
p += 29 - (p % 30)
while 1:
if display: print(".", end=' ')
p += 30
if p >= high:
p = getRandomNumber(low, high)
p += 29 - (p % 30)
if isPrime(p, display=display):
return p
#Unused at the moment...
def getRandomSafePrime(bits, display=False):
if bits < 10:
raise AssertionError()
#The 1.5 ensures the 2 MSBs are set
#Thus, when used for p,q in RSA, n will have its MSB set
#
#Since 30 is lcm(2,3,5), we'll set our test numbers to
#29 % 30 and keep them there
low = (2 ** (bits-2)) * 3//2
high = (2 ** (bits-1)) - 30
q = getRandomNumber(low, high)
q += 29 - (q % 30)
while 1:
if display: print(".", end=' ')
q += 30
if (q >= high):
q = getRandomNumber(low, high)
q += 29 - (q % 30)
#Ideas from Tom Wu's SRP code
#Do trial division on p and q before Rabin-Miller
if isPrime(q, 0, display=display):
p = (2 * q) + 1
if isPrime(p, display=display):
if isPrime(q, display=display):
return p
class RSAKey(object):
def __init__(self, n=0, e=0, d=0, p=0, q=0, dP=0, dQ=0, qInv=0):
if (n and not e) or (e and not n):
raise AssertionError()
self.n = n
self.e = e
self.d = d
self.p = p
self.q = q
self.dP = dP
self.dQ = dQ
self.qInv = qInv
self.blinder = 0
self.unblinder = 0
def __len__(self):
"""Return the length of this key in bits.
@rtype: int
"""
return numBits(self.n)
def hasPrivateKey(self):
return self.d != 0
def hashAndSign(self, bytes):
"""Hash and sign the passed-in bytes.
This requires the key to have a private component. It performs
a PKCS1-SHA1 signature on the passed-in data.
@type bytes: str or L{bytearray} of unsigned bytes
@param bytes: The value which will be hashed and signed.
@rtype: L{bytearray} of unsigned bytes.
@return: A PKCS1-SHA1 signature on the passed-in data.
"""
hashBytes = SHA1(bytearray(bytes))
prefixedHashBytes = self._addPKCS1SHA1Prefix(hashBytes)
sigBytes = self.sign(prefixedHashBytes)
return sigBytes
def hashAndVerify(self, sigBytes, bytes):
"""Hash and verify the passed-in bytes with the signature.
This verifies a PKCS1-SHA1 signature on the passed-in data.
@type sigBytes: L{bytearray} of unsigned bytes
@param sigBytes: A PKCS1-SHA1 signature.
@type bytes: str or L{bytearray} of unsigned bytes
@param bytes: The value which will be hashed and verified.
@rtype: bool
@return: Whether the signature matches the passed-in data.
"""
hashBytes = SHA1(bytearray(bytes))
# Try it with/without the embedded NULL
prefixedHashBytes1 = self._addPKCS1SHA1Prefix(hashBytes, False)
prefixedHashBytes2 = self._addPKCS1SHA1Prefix(hashBytes, True)
result1 = self.verify(sigBytes, prefixedHashBytes1)
result2 = self.verify(sigBytes, prefixedHashBytes2)
return (result1 or result2)
def sign(self, bytes):
"""Sign the passed-in bytes.
This requires the key to have a private component. It performs
a PKCS1 signature on the passed-in data.
@type bytes: L{bytearray} of unsigned bytes
@param bytes: The value which will be signed.
@rtype: L{bytearray} of unsigned bytes.
@return: A PKCS1 signature on the passed-in data.
"""
if not self.hasPrivateKey():
raise AssertionError()
paddedBytes = self._addPKCS1Padding(bytes, 1)
m = bytesToNumber(paddedBytes)
if m >= self.n:
raise ValueError()
c = self._rawPrivateKeyOp(m)
sigBytes = numberToByteArray(c, numBytes(self.n))
return sigBytes
def verify(self, sigBytes, bytes):
"""Verify the passed-in bytes with the signature.
This verifies a PKCS1 signature on the passed-in data.
@type sigBytes: L{bytearray} of unsigned bytes
@param sigBytes: A PKCS1 signature.
@type bytes: L{bytearray} of unsigned bytes
@param bytes: The value which will be verified.
@rtype: bool
@return: Whether the signature matches the passed-in data.
"""
if len(sigBytes) != numBytes(self.n):
return False
paddedBytes = self._addPKCS1Padding(bytes, 1)
c = bytesToNumber(sigBytes)
if c >= self.n:
return False
m = self._rawPublicKeyOp(c)
checkBytes = numberToByteArray(m, numBytes(self.n))
return checkBytes == paddedBytes
def encrypt(self, bytes):
"""Encrypt the passed-in bytes.
This performs PKCS1 encryption of the passed-in data.
@type bytes: L{bytearray} of unsigned bytes
@param bytes: The value which will be encrypted.
@rtype: L{bytearray} of unsigned bytes.
@return: A PKCS1 encryption of the passed-in data.
"""
paddedBytes = self._addPKCS1Padding(bytes, 2)
m = bytesToNumber(paddedBytes)
if m >= self.n:
raise ValueError()
c = self._rawPublicKeyOp(m)
encBytes = numberToByteArray(c, numBytes(self.n))
return encBytes
def decrypt(self, encBytes):
"""Decrypt the passed-in bytes.
This requires the key to have a private component. It performs
PKCS1 decryption of the passed-in data.
@type encBytes: L{bytearray} of unsigned bytes
@param encBytes: The value which will be decrypted.
@rtype: L{bytearray} of unsigned bytes or None.
@return: A PKCS1 decryption of the passed-in data or None if
the data is not properly formatted.
"""
if not self.hasPrivateKey():
raise AssertionError()
if len(encBytes) != numBytes(self.n):
return None
c = bytesToNumber(encBytes)
if c >= self.n:
return None
m = self._rawPrivateKeyOp(c)
decBytes = numberToByteArray(m, numBytes(self.n))
#Check first two bytes
if decBytes[0] != 0 or decBytes[1] != 2:
return None
#Scan through for zero separator
for x in range(1, len(decBytes)-1):
if decBytes[x]== 0:
break
else:
return None
return decBytes[x+1:] #Return everything after the separator
# **************************************************************************
# Helper Functions for RSA Keys
# **************************************************************************
def _addPKCS1SHA1Prefix(self, bytes, withNULL=True):
# There is a long history of confusion over whether the SHA1
# algorithmIdentifier should be encoded with a NULL parameter or
# with the parameter omitted. While the original intention was
# apparently to omit it, many toolkits went the other way. TLS 1.2
# specifies the NULL should be included, and this behavior is also
# mandated in recent versions of PKCS #1, and is what tlslite has
# always implemented. Anyways, verification code should probably
# accept both. However, nothing uses this code yet, so this is
# all fairly moot.
if not withNULL:
prefixBytes = bytearray(\
[0x30,0x1f,0x30,0x07,0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a,0x04,0x14])
else:
prefixBytes = bytearray(\
[0x30,0x21,0x30,0x09,0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a,0x05,0x00,0x04,0x14])
prefixedBytes = prefixBytes + bytes
return prefixedBytes
def _addPKCS1Padding(self, bytes, blockType):
padLength = (numBytes(self.n) - (len(bytes)+3))
if blockType == 1: #Signature padding
pad = [0xFF] * padLength
elif blockType == 2: #Encryption padding
pad = bytearray(0)
while len(pad) < padLength:
padBytes = getRandomBytes(padLength * 2)
pad = [b for b in padBytes if b != 0]
pad = pad[:padLength]
else:
raise AssertionError()
padding = bytearray([0,blockType] + pad + [0])
paddedBytes = padding + bytes
return paddedBytes
def _rawPrivateKeyOp(self, m):
#Create blinding values, on the first pass:
if not self.blinder:
self.unblinder = getRandomNumber(2, self.n)
self.blinder = powMod(invMod(self.unblinder, self.n), self.e,
self.n)
#Blind the input
m = (m * self.blinder) % self.n
#Perform the RSA operation
c = self._rawPrivateKeyOpHelper(m)
#Unblind the output
c = (c * self.unblinder) % self.n
#Update blinding values
self.blinder = (self.blinder * self.blinder) % self.n
self.unblinder = (self.unblinder * self.unblinder) % self.n
#Return the output
return c
def _rawPrivateKeyOpHelper(self, m):
#Non-CRT version
#c = powMod(m, self.d, self.n)
#CRT version (~3x faster)
s1 = powMod(m, self.dP, self.p)
s2 = powMod(m, self.dQ, self.q)
h = ((s1 - s2) * self.qInv) % self.p
c = s2 + self.q * h
return c
def _rawPublicKeyOp(self, c):
m = powMod(c, self.e, self.n)
return m
def acceptsPassword(self):
return False
def generate(bits):
key = Python_RSAKey()
p = getRandomPrime(bits//2, False)
q = getRandomPrime(bits//2, False)
t = lcm(p-1, q-1)
key.n = p * q
key.e = 65537
key.d = invMod(key.e, t)
key.p = p
key.q = q
key.dP = key.d % (p-1)
key.dQ = key.d % (q-1)
key.qInv = invMod(q, p)
return key
generate = staticmethod(generate)