|
|
@ -216,71 +216,12 @@ class Wallet: |
|
|
|
|
|
|
|
return secexp, compressed |
|
|
|
|
|
|
|
def msg_magic(self, message): |
|
|
|
return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message |
|
|
|
|
|
|
|
def sign_message(self, address, message, password): |
|
|
|
secexp, compressed = self.get_private_key(address, password) |
|
|
|
private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 ) |
|
|
|
public_key = private_key.get_verifying_key() |
|
|
|
signature = private_key.sign_digest( Hash( self.msg_magic( message ) ), sigencode = ecdsa.util.sigencode_string ) |
|
|
|
assert public_key.verify_digest( signature, Hash( self.msg_magic( message ) ), sigdecode = ecdsa.util.sigdecode_string) |
|
|
|
for i in range(4): |
|
|
|
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature ) |
|
|
|
try: |
|
|
|
self.verify_message( address, sig, message) |
|
|
|
return sig |
|
|
|
except: |
|
|
|
continue |
|
|
|
else: |
|
|
|
raise BaseException("error: cannot sign message") |
|
|
|
|
|
|
|
|
|
|
|
def verify_message(self, address, signature, message): |
|
|
|
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """ |
|
|
|
from ecdsa import numbertheory, ellipticcurve, util |
|
|
|
import msqr |
|
|
|
curve = curve_secp256k1 |
|
|
|
G = generator_secp256k1 |
|
|
|
order = G.order() |
|
|
|
# extract r,s from signature |
|
|
|
sig = base64.b64decode(signature) |
|
|
|
if len(sig) != 65: raise BaseException("Wrong encoding") |
|
|
|
r,s = util.sigdecode_string(sig[1:], order) |
|
|
|
nV = ord(sig[0]) |
|
|
|
if nV < 27 or nV >= 35: |
|
|
|
raise BaseException("Bad encoding") |
|
|
|
if nV >= 31: |
|
|
|
compressed = True |
|
|
|
nV -= 4 |
|
|
|
else: |
|
|
|
compressed = False |
|
|
|
|
|
|
|
recid = nV - 27 |
|
|
|
# 1.1 |
|
|
|
x = r + (recid/2) * order |
|
|
|
# 1.3 |
|
|
|
alpha = ( x * x * x + curve.a() * x + curve.b() ) % curve.p() |
|
|
|
beta = msqr.modular_sqrt(alpha, curve.p()) |
|
|
|
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta |
|
|
|
# 1.4 the constructor checks that nR is at infinity |
|
|
|
R = ellipticcurve.Point(curve, x, y, order) |
|
|
|
# 1.5 compute e from message: |
|
|
|
h = Hash( self.msg_magic( message ) ) |
|
|
|
e = string_to_number(h) |
|
|
|
minus_e = -e % order |
|
|
|
# 1.6 compute Q = r^-1 (sR - eG) |
|
|
|
inv_r = numbertheory.inverse_mod(r,order) |
|
|
|
Q = inv_r * ( s * R + minus_e * G ) |
|
|
|
public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 ) |
|
|
|
# check that Q is the public key |
|
|
|
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) |
|
|
|
# check that we get the original signing address |
|
|
|
addr = public_key_to_bc_address( encode_point(public_key, compressed) ) |
|
|
|
if address != addr: |
|
|
|
raise BaseException("Bad signature") |
|
|
|
|
|
|
|
|
|
|
|
sec = self.get_private_key_base58(address, password) |
|
|
|
key = regenerate_key(sec) |
|
|
|
compressed = is_compressed(sec) |
|
|
|
return key.sign_message(message, compressed, address) |
|
|
|
|
|
|
|
def create_new_address(self, for_change): |
|
|
|
n = len(self.change_addresses) if for_change else len(self.addresses) |
|
|
|
address = self.get_new_address(n, for_change) |
|
|
|