# -*- coding: utf-8 -*- # # Electrum - lightweight Bitcoin client # Copyright (C) 2011 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import hashlib import base64 import hmac import os import json import ecdsa import pyaes from .util import bfh, bh2u, to_string from . import version from .util import print_error, InvalidPassword, assert_bytes, to_bytes, inv_dict from . import segwit_addr def read_json(filename, default): path = os.path.join(os.path.dirname(__file__), filename) try: with open(path, 'r') as f: r = json.loads(f.read()) except: r = default return r # Version numbers for BIP32 extended keys # standard: xprv, xpub # segwit in p2sh: yprv, ypub # native segwit: zprv, zpub XPRV_HEADERS = { 'standard': 0x0488ade4, 'p2wpkh-p2sh': 0x049d7878, 'p2wsh-p2sh': 0x295b005, 'p2wpkh': 0x4b2430c, 'p2wsh': 0x2aa7a99 } XPUB_HEADERS = { 'standard': 0x0488b21e, 'p2wpkh-p2sh': 0x049d7cb2, 'p2wsh-p2sh': 0x295b43f, 'p2wpkh': 0x4b24746, 'p2wsh': 0x2aa7ed3 } class NetworkConstants: @classmethod def set_mainnet(cls): cls.TESTNET = False cls.WIF_PREFIX = 0x80 cls.ADDRTYPE_P2PKH = 0 cls.ADDRTYPE_P2SH = 5 cls.SEGWIT_HRP = "bc" cls.GENESIS = "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f" cls.DEFAULT_PORTS = {'t': '50001', 's': '50002'} cls.DEFAULT_SERVERS = read_json('servers.json', {}) cls.CHECKPOINTS = read_json('checkpoints.json', []) @classmethod def set_testnet(cls): cls.TESTNET = True cls.WIF_PREFIX = 0xef cls.ADDRTYPE_P2PKH = 111 cls.ADDRTYPE_P2SH = 196 cls.SEGWIT_HRP = "tb" cls.GENESIS = "000000000933ea01ad0ee984209779baaec3ced90fa3f408719526f8d77f4943" cls.DEFAULT_PORTS = {'t':'51001', 's':'51002'} cls.DEFAULT_SERVERS = read_json('servers_testnet.json', {}) cls.CHECKPOINTS = read_json('checkpoints_testnet.json', []) NetworkConstants.set_mainnet() ################################## transactions FEE_STEP = 10000 MAX_FEE_RATE = 300000 COINBASE_MATURITY = 100 COIN = 100000000 # supported types of transction outputs TYPE_ADDRESS = 0 TYPE_PUBKEY = 1 TYPE_SCRIPT = 2 # AES encryption try: from Cryptodome.Cipher import AES except: AES = None class InvalidPadding(Exception): pass def append_PKCS7_padding(data): assert_bytes(data) padlen = 16 - (len(data) % 16) return data + bytes([padlen]) * padlen def strip_PKCS7_padding(data): assert_bytes(data) if len(data) % 16 != 0 or len(data) == 0: raise InvalidPadding("invalid length") padlen = data[-1] if padlen > 16: raise InvalidPadding("invalid padding byte (large)") for i in data[-padlen:]: if i != padlen: raise InvalidPadding("invalid padding byte (inconsistent)") return data[0:-padlen] def aes_encrypt_with_iv(key, iv, data): assert_bytes(key, iv, data) data = append_PKCS7_padding(data) if AES: e = AES.new(key, AES.MODE_CBC, iv).encrypt(data) else: aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv) aes = pyaes.Encrypter(aes_cbc, padding=pyaes.PADDING_NONE) e = aes.feed(data) + aes.feed() # empty aes.feed() flushes buffer return e def aes_decrypt_with_iv(key, iv, data): assert_bytes(key, iv, data) if AES: cipher = AES.new(key, AES.MODE_CBC, iv) data = cipher.decrypt(data) else: aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv) aes = pyaes.Decrypter(aes_cbc, padding=pyaes.PADDING_NONE) data = aes.feed(data) + aes.feed() # empty aes.feed() flushes buffer try: return strip_PKCS7_padding(data) except InvalidPadding: raise InvalidPassword() def EncodeAES(secret, s): assert_bytes(s) iv = bytes(os.urandom(16)) ct = aes_encrypt_with_iv(secret, iv, s) e = iv + ct return base64.b64encode(e) def DecodeAES(secret, e): e = bytes(base64.b64decode(e)) iv, e = e[:16], e[16:] s = aes_decrypt_with_iv(secret, iv, e) return s def pw_encode(s, password): if password: secret = Hash(password) return EncodeAES(secret, to_bytes(s, "utf8")).decode('utf8') else: return s def pw_decode(s, password): if password is not None: secret = Hash(password) try: d = to_string(DecodeAES(secret, s), "utf8") except Exception: raise InvalidPassword() return d else: return s def rev_hex(s): return bh2u(bfh(s)[::-1]) def int_to_hex(i, length=1): assert isinstance(i, int) s = hex(i)[2:].rstrip('L') s = "0"*(2*length - len(s)) + s return rev_hex(s) def var_int(i): # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer if i<0xfd: return int_to_hex(i) elif i<=0xffff: return "fd"+int_to_hex(i,2) elif i<=0xffffffff: return "fe"+int_to_hex(i,4) else: return "ff"+int_to_hex(i,8) def op_push(i): if i<0x4c: return int_to_hex(i) elif i<0xff: return '4c' + int_to_hex(i) elif i<0xffff: return '4d' + int_to_hex(i,2) else: return '4e' + int_to_hex(i,4) def push_script(x): return op_push(len(x)//2) + x def sha256(x): x = to_bytes(x, 'utf8') return bytes(hashlib.sha256(x).digest()) def Hash(x): x = to_bytes(x, 'utf8') out = bytes(sha256(sha256(x))) return out hash_encode = lambda x: bh2u(x[::-1]) hash_decode = lambda x: bfh(x)[::-1] hmac_sha_512 = lambda x, y: hmac.new(x, y, hashlib.sha512).digest() def is_new_seed(x, prefix=version.SEED_PREFIX): from . import mnemonic x = mnemonic.normalize_text(x) s = bh2u(hmac_sha_512(b"Seed version", x.encode('utf8'))) return s.startswith(prefix) def is_old_seed(seed): from . import old_mnemonic, mnemonic seed = mnemonic.normalize_text(seed) words = seed.split() try: # checks here are deliberately left weak for legacy reasons, see #3149 old_mnemonic.mn_decode(words) uses_electrum_words = True except Exception: uses_electrum_words = False try: seed = bfh(seed) is_hex = (len(seed) == 16 or len(seed) == 32) except Exception: is_hex = False return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24)) def seed_type(x): if is_old_seed(x): return 'old' elif is_new_seed(x): return 'standard' elif is_new_seed(x, version.SEED_PREFIX_SW): return 'segwit' elif is_new_seed(x, version.SEED_PREFIX_2FA): return '2fa' return '' is_seed = lambda x: bool(seed_type(x)) # pywallet openssl private key implementation def i2o_ECPublicKey(pubkey, compressed=False): # public keys are 65 bytes long (520 bits) # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed # compressed keys: where is 0x02 if y is even and 0x03 if y is odd if compressed: if pubkey.point.y() & 1: key = '03' + '%064x' % pubkey.point.x() else: key = '02' + '%064x' % pubkey.point.x() else: key = '04' + \ '%064x' % pubkey.point.x() + \ '%064x' % pubkey.point.y() return bfh(key) # end pywallet openssl private key implementation ############ functions from pywallet ##################### def hash_160(public_key): try: md = hashlib.new('ripemd160') md.update(sha256(public_key)) return md.digest() except BaseException: from . import ripemd md = ripemd.new(sha256(public_key)) return md.digest() def hash160_to_b58_address(h160, addrtype, witness_program_version=1): s = bytes([addrtype]) s += h160 return base_encode(s+Hash(s)[0:4], base=58) def b58_address_to_hash160(addr): addr = to_bytes(addr, 'ascii') _bytes = base_decode(addr, 25, base=58) return _bytes[0], _bytes[1:21] def hash160_to_p2pkh(h160): return hash160_to_b58_address(h160, NetworkConstants.ADDRTYPE_P2PKH) def hash160_to_p2sh(h160): return hash160_to_b58_address(h160, NetworkConstants.ADDRTYPE_P2SH) def public_key_to_p2pkh(public_key): return hash160_to_p2pkh(hash_160(public_key)) def hash_to_segwit_addr(h): return segwit_addr.encode(NetworkConstants.SEGWIT_HRP, 0, h) def public_key_to_p2wpkh(public_key): return hash_to_segwit_addr(hash_160(public_key)) def script_to_p2wsh(script): return hash_to_segwit_addr(sha256(bfh(script))) def p2wpkh_nested_script(pubkey): pkh = bh2u(hash_160(bfh(pubkey))) return '00' + push_script(pkh) def p2wsh_nested_script(witness_script): wsh = bh2u(sha256(bfh(witness_script))) return '00' + push_script(wsh) def pubkey_to_address(txin_type, pubkey): if txin_type == 'p2pkh': return public_key_to_p2pkh(bfh(pubkey)) elif txin_type == 'p2wpkh': return hash_to_segwit_addr(hash_160(bfh(pubkey))) elif txin_type == 'p2wpkh-p2sh': scriptSig = p2wpkh_nested_script(pubkey) return hash160_to_p2sh(hash_160(bfh(scriptSig))) else: raise NotImplementedError(txin_type) def redeem_script_to_address(txin_type, redeem_script): if txin_type == 'p2sh': return hash160_to_p2sh(hash_160(bfh(redeem_script))) elif txin_type == 'p2wsh': return script_to_p2wsh(redeem_script) elif txin_type == 'p2wsh-p2sh': scriptSig = p2wsh_nested_script(redeem_script) return hash160_to_p2sh(hash_160(bfh(scriptSig))) else: raise NotImplementedError(txin_type) def script_to_address(script): from .transaction import get_address_from_output_script t, addr = get_address_from_output_script(bfh(script)) assert t == TYPE_ADDRESS return addr def address_to_script(addr): witver, witprog = segwit_addr.decode(NetworkConstants.SEGWIT_HRP, addr) if witprog is not None: assert (0 <= witver <= 16) OP_n = witver + 0x50 if witver > 0 else 0 script = bh2u(bytes([OP_n])) script += push_script(bh2u(bytes(witprog))) return script addrtype, hash_160 = b58_address_to_hash160(addr) if addrtype == NetworkConstants.ADDRTYPE_P2PKH: script = '76a9' # op_dup, op_hash_160 script += push_script(bh2u(hash_160)) script += '88ac' # op_equalverify, op_checksig elif addrtype == NetworkConstants.ADDRTYPE_P2SH: script = 'a9' # op_hash_160 script += push_script(bh2u(hash_160)) script += '87' # op_equal else: raise BaseException('unknown address type') return script def address_to_scripthash(addr): script = address_to_script(addr) return script_to_scripthash(script) def script_to_scripthash(script): h = sha256(bytes.fromhex(script))[0:32] return bh2u(bytes(reversed(h))) def public_key_to_p2pk_script(pubkey): script = push_script(pubkey) script += 'ac' # op_checksig return script __b58chars = b'123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' assert len(__b58chars) == 58 __b43chars = b'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:' assert len(__b43chars) == 43 def base_encode(v, base): """ encode v, which is a string of bytes, to base58.""" assert_bytes(v) assert base in (58, 43) chars = __b58chars if base == 43: chars = __b43chars long_value = 0 for (i, c) in enumerate(v[::-1]): long_value += (256**i) * c result = bytearray() while long_value >= base: div, mod = divmod(long_value, base) result.append(chars[mod]) long_value = div result.append(chars[long_value]) # Bitcoin does a little leading-zero-compression: # leading 0-bytes in the input become leading-1s nPad = 0 for c in v: if c == 0x00: nPad += 1 else: break result.extend([chars[0]] * nPad) result.reverse() return result.decode('ascii') def base_decode(v, length, base): """ decode v into a string of len bytes.""" # assert_bytes(v) v = to_bytes(v, 'ascii') assert base in (58, 43) chars = __b58chars if base == 43: chars = __b43chars long_value = 0 for (i, c) in enumerate(v[::-1]): long_value += chars.find(bytes([c])) * (base**i) result = bytearray() while long_value >= 256: div, mod = divmod(long_value, 256) result.append(mod) long_value = div result.append(long_value) nPad = 0 for c in v: if c == chars[0]: nPad += 1 else: break result.extend(b'\x00' * nPad) if length is not None and len(result) != length: return None result.reverse() return bytes(result) def EncodeBase58Check(vchIn): hash = Hash(vchIn) return base_encode(vchIn + hash[0:4], base=58) def DecodeBase58Check(psz): vchRet = base_decode(psz, None, base=58) key = vchRet[0:-4] csum = vchRet[-4:] hash = Hash(key) cs32 = hash[0:4] if cs32 != csum: return None else: return key # extended key export format for segwit SCRIPT_TYPES = { 'p2pkh':0, 'p2wpkh':1, 'p2wpkh-p2sh':2, 'p2sh':5, 'p2wsh':6, 'p2wsh-p2sh':7 } def serialize_privkey(secret, compressed, txin_type): prefix = bytes([(SCRIPT_TYPES[txin_type]+NetworkConstants.WIF_PREFIX)&255]) suffix = b'\01' if compressed else b'' vchIn = prefix + secret + suffix return EncodeBase58Check(vchIn) def deserialize_privkey(key): # whether the pubkey is compressed should be visible from the keystore vch = DecodeBase58Check(key) if is_minikey(key): return 'p2pkh', minikey_to_private_key(key), True elif vch: txin_type = inv_dict(SCRIPT_TYPES)[vch[0] - NetworkConstants.WIF_PREFIX] assert len(vch) in [33, 34] compressed = len(vch) == 34 return txin_type, vch[1:33], compressed else: raise BaseException("cannot deserialize", key) def regenerate_key(pk): assert len(pk) == 32 return EC_KEY(pk) def GetPubKey(pubkey, compressed=False): return i2o_ECPublicKey(pubkey, compressed) def GetSecret(pkey): return bfh('%064x' % pkey.secret) def is_compressed(sec): return deserialize_privkey(sec)[2] def public_key_from_private_key(pk, compressed): pkey = regenerate_key(pk) public_key = GetPubKey(pkey.pubkey, compressed) return bh2u(public_key) def address_from_private_key(sec): txin_type, privkey, compressed = deserialize_privkey(sec) public_key = public_key_from_private_key(privkey, compressed) return pubkey_to_address(txin_type, public_key) def is_segwit_address(addr): try: witver, witprog = segwit_addr.decode(NetworkConstants.SEGWIT_HRP, addr) except Exception as e: return False return witprog is not None def is_b58_address(addr): try: addrtype, h = b58_address_to_hash160(addr) except Exception as e: return False if addrtype not in [NetworkConstants.ADDRTYPE_P2PKH, NetworkConstants.ADDRTYPE_P2SH]: return False return addr == hash160_to_b58_address(h, addrtype) def is_address(addr): return is_segwit_address(addr) or is_b58_address(addr) def is_private_key(key): try: k = deserialize_privkey(key) return k is not False except: return False ########### end pywallet functions ####################### def is_minikey(text): # Minikeys are typically 22 or 30 characters, but this routine # permits any length of 20 or more provided the minikey is valid. # A valid minikey must begin with an 'S', be in base58, and when # suffixed with '?' have its SHA256 hash begin with a zero byte. # They are widely used in Casascius physical bitcoins. return (len(text) >= 20 and text[0] == 'S' and all(ord(c) in __b58chars for c in text) and sha256(text + '?')[0] == 0x00) def minikey_to_private_key(text): return sha256(text) from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1 from ecdsa.curves import SECP256k1 from ecdsa.ellipticcurve import Point from ecdsa.util import string_to_number, number_to_string def msg_magic(message): length = bfh(var_int(len(message))) return b"\x18Bitcoin Signed Message:\n" + length + message def verify_message(address, sig, message): assert_bytes(sig, message) try: h = Hash(msg_magic(message)) public_key, compressed = pubkey_from_signature(sig, h) # check public key using the address pubkey = point_to_ser(public_key.pubkey.point, compressed) for txin_type in ['p2pkh','p2wpkh','p2wpkh-p2sh']: addr = pubkey_to_address(txin_type, bh2u(pubkey)) if address == addr: break else: raise Exception("Bad signature") # check message public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) return True except Exception as e: print_error("Verification error: {0}".format(e)) return False def encrypt_message(message, pubkey, magic=b'BIE1'): return EC_KEY.encrypt_message(message, bfh(pubkey), magic) def chunks(l, n): return [l[i:i+n] for i in range(0, len(l), n)] def ECC_YfromX(x,curved=curve_secp256k1, odd=True): _p = curved.p() _a = curved.a() _b = curved.b() for offset in range(128): Mx = x + offset My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p My = pow(My2, (_p+1)//4, _p ) if curved.contains_point(Mx,My): if odd == bool(My&1): return [My,offset] return [_p-My,offset] raise Exception('ECC_YfromX: No Y found') def negative_point(P): return Point( P.curve(), P.x(), -P.y(), P.order() ) def point_to_ser(P, comp=True ): if comp: return bfh( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ) return bfh( '04'+('%064x'%P.x())+('%064x'%P.y()) ) def ser_to_point(Aser): curve = curve_secp256k1 generator = generator_secp256k1 _r = generator.order() assert Aser[0] in [0x02, 0x03, 0x04] if Aser[0] == 0x04: return Point( curve, string_to_number(Aser[1:33]), string_to_number(Aser[33:]), _r ) Mx = string_to_number(Aser[1:]) return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0] == 0x03)[0], _r ) class MyVerifyingKey(ecdsa.VerifyingKey): @classmethod def from_signature(klass, sig, recid, h, curve): """ See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """ from ecdsa import util, numbertheory from . import msqr curveFp = curve.curve G = curve.generator order = G.order() # extract r,s from signature r, s = util.sigdecode_string(sig, order) # 1.1 x = r + (recid//2) * order # 1.3 alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p() beta = msqr.modular_sqrt(alpha, curveFp.p()) y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta # 1.4 the constructor checks that nR is at infinity R = Point(curveFp, x, y, order) # 1.5 compute e from message: e = string_to_number(h) minus_e = -e % order # 1.6 compute Q = r^-1 (sR - eG) inv_r = numbertheory.inverse_mod(r,order) Q = inv_r * ( s * R + minus_e * G ) return klass.from_public_point( Q, curve ) def pubkey_from_signature(sig, h): if len(sig) != 65: raise Exception("Wrong encoding") nV = sig[0] if nV < 27 or nV >= 35: raise Exception("Bad encoding") if nV >= 31: compressed = True nV -= 4 else: compressed = False recid = nV - 27 return MyVerifyingKey.from_signature(sig[1:], recid, h, curve = SECP256k1), compressed class MySigningKey(ecdsa.SigningKey): """Enforce low S values in signatures""" def sign_number(self, number, entropy=None, k=None): curve = SECP256k1 G = curve.generator order = G.order() r, s = ecdsa.SigningKey.sign_number(self, number, entropy, k) if s > order//2: s = order - s return r, s class EC_KEY(object): def __init__( self, k ): secret = string_to_number(k) self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret ) self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret ) self.secret = secret def get_public_key(self, compressed=True): return bh2u(point_to_ser(self.pubkey.point, compressed)) def sign(self, msg_hash): private_key = MySigningKey.from_secret_exponent(self.secret, curve = SECP256k1) public_key = private_key.get_verifying_key() signature = private_key.sign_digest_deterministic(msg_hash, hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string) assert public_key.verify_digest(signature, msg_hash, sigdecode = ecdsa.util.sigdecode_string) return signature def sign_message(self, message, is_compressed): message = to_bytes(message, 'utf8') signature = self.sign(Hash(msg_magic(message))) for i in range(4): sig = bytes([27 + i + (4 if is_compressed else 0)]) + signature try: self.verify_message(sig, message) return sig except Exception as e: continue else: raise Exception("error: cannot sign message") def verify_message(self, sig, message): assert_bytes(message) h = Hash(msg_magic(message)) public_key, compressed = pubkey_from_signature(sig, h) # check public key if point_to_ser(public_key.pubkey.point, compressed) != point_to_ser(self.pubkey.point, compressed): raise Exception("Bad signature") # check message public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) # ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac @classmethod def encrypt_message(self, message, pubkey, magic=b'BIE1'): assert_bytes(message) pk = ser_to_point(pubkey) if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()): raise Exception('invalid pubkey') ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2,256)), generator_secp256k1.order()) ephemeral = EC_KEY(ephemeral_exponent) ecdh_key = point_to_ser(pk * ephemeral.privkey.secret_multiplier) key = hashlib.sha512(ecdh_key).digest() iv, key_e, key_m = key[0:16], key[16:32], key[32:] ciphertext = aes_encrypt_with_iv(key_e, iv, message) ephemeral_pubkey = bfh(ephemeral.get_public_key(compressed=True)) encrypted = magic + ephemeral_pubkey + ciphertext mac = hmac.new(key_m, encrypted, hashlib.sha256).digest() return base64.b64encode(encrypted + mac) def decrypt_message(self, encrypted, magic=b'BIE1'): encrypted = base64.b64decode(encrypted) if len(encrypted) < 85: raise Exception('invalid ciphertext: length') magic_found = encrypted[:4] ephemeral_pubkey = encrypted[4:37] ciphertext = encrypted[37:-32] mac = encrypted[-32:] if magic_found != magic: raise Exception('invalid ciphertext: invalid magic bytes') try: ephemeral_pubkey = ser_to_point(ephemeral_pubkey) except AssertionError as e: raise Exception('invalid ciphertext: invalid ephemeral pubkey') if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ephemeral_pubkey.x(), ephemeral_pubkey.y()): raise Exception('invalid ciphertext: invalid ephemeral pubkey') ecdh_key = point_to_ser(ephemeral_pubkey * self.privkey.secret_multiplier) key = hashlib.sha512(ecdh_key).digest() iv, key_e, key_m = key[0:16], key[16:32], key[32:] if mac != hmac.new(key_m, encrypted[:-32], hashlib.sha256).digest(): raise InvalidPassword() return aes_decrypt_with_iv(key_e, iv, ciphertext) ###################################### BIP32 ############################## random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) ) BIP32_PRIME = 0x80000000 def get_pubkeys_from_secret(secret): # public key private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 ) public_key = private_key.get_verifying_key() K = public_key.to_string() K_compressed = GetPubKey(public_key.pubkey,True) return K, K_compressed # Child private key derivation function (from master private key) # k = master private key (32 bytes) # c = master chain code (extra entropy for key derivation) (32 bytes) # n = the index of the key we want to derive. (only 32 bits will be used) # If n is negative (i.e. the 32nd bit is set), the resulting private key's # corresponding public key can NOT be determined without the master private key. # However, if n is positive, the resulting private key's corresponding # public key can be determined without the master private key. def CKD_priv(k, c, n): is_prime = n & BIP32_PRIME return _CKD_priv(k, c, bfh(rev_hex(int_to_hex(n,4))), is_prime) def _CKD_priv(k, c, s, is_prime): order = generator_secp256k1.order() keypair = EC_KEY(k) cK = GetPubKey(keypair.pubkey,True) data = bytes([0]) + k + s if is_prime else cK + s I = hmac.new(c, data, hashlib.sha512).digest() k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order ) c_n = I[32:] return k_n, c_n # Child public key derivation function (from public key only) # K = master public key # c = master chain code # n = index of key we want to derive # This function allows us to find the nth public key, as long as n is # non-negative. If n is negative, we need the master private key to find it. def CKD_pub(cK, c, n): if n & BIP32_PRIME: raise return _CKD_pub(cK, c, bfh(rev_hex(int_to_hex(n,4)))) # helper function, callable with arbitrary string def _CKD_pub(cK, c, s): order = generator_secp256k1.order() I = hmac.new(c, cK + s, hashlib.sha512).digest() curve = SECP256k1 pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK) public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 ) c_n = I[32:] cK_n = GetPubKey(public_key.pubkey,True) return cK_n, c_n def xprv_header(xtype): return bfh("%08x" % XPRV_HEADERS[xtype]) def xpub_header(xtype): return bfh("%08x" % XPUB_HEADERS[xtype]) def serialize_xprv(xtype, c, k, depth=0, fingerprint=b'\x00'*4, child_number=b'\x00'*4): xprv = xprv_header(xtype) + bytes([depth]) + fingerprint + child_number + c + bytes([0]) + k return EncodeBase58Check(xprv) def serialize_xpub(xtype, c, cK, depth=0, fingerprint=b'\x00'*4, child_number=b'\x00'*4): xpub = xpub_header(xtype) + bytes([depth]) + fingerprint + child_number + c + cK return EncodeBase58Check(xpub) def deserialize_xkey(xkey, prv): xkey = DecodeBase58Check(xkey) if len(xkey) != 78: raise BaseException('Invalid length') depth = xkey[4] fingerprint = xkey[5:9] child_number = xkey[9:13] c = xkey[13:13+32] header = int('0x' + bh2u(xkey[0:4]), 16) headers = XPRV_HEADERS if prv else XPUB_HEADERS if header not in headers.values(): raise BaseException('Invalid xpub format', hex(header)) xtype = list(headers.keys())[list(headers.values()).index(header)] n = 33 if prv else 32 K_or_k = xkey[13+n:] return xtype, depth, fingerprint, child_number, c, K_or_k def deserialize_xpub(xkey): return deserialize_xkey(xkey, False) def deserialize_xprv(xkey): return deserialize_xkey(xkey, True) def xpub_type(x): return deserialize_xpub(x)[0] def is_xpub(text): try: deserialize_xpub(text) return True except: return False def is_xprv(text): try: deserialize_xprv(text) return True except: return False def xpub_from_xprv(xprv): xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) K, cK = get_pubkeys_from_secret(k) return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) def bip32_root(seed, xtype): I = hmac.new(b"Bitcoin seed", seed, hashlib.sha512).digest() master_k = I[0:32] master_c = I[32:] K, cK = get_pubkeys_from_secret(master_k) xprv = serialize_xprv(xtype, master_c, master_k) xpub = serialize_xpub(xtype, master_c, cK) return xprv, xpub def xpub_from_pubkey(xtype, cK): assert cK[0] in [0x02, 0x03] return serialize_xpub(xtype, b'\x00'*32, cK) def bip32_derivation(s): assert s.startswith('m/') s = s[2:] for n in s.split('/'): if n == '': continue i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) yield i def is_bip32_derivation(x): try: [ i for i in bip32_derivation(x)] return True except : return False def bip32_private_derivation(xprv, branch, sequence): assert sequence.startswith(branch) if branch == sequence: return xprv, xpub_from_xprv(xprv) xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) sequence = sequence[len(branch):] for n in sequence.split('/'): if n == '': continue i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) parent_k = k k, c = CKD_priv(k, c, i) depth += 1 _, parent_cK = get_pubkeys_from_secret(parent_k) fingerprint = hash_160(parent_cK)[0:4] child_number = bfh("%08X"%i) K, cK = get_pubkeys_from_secret(k) xpub = serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) xprv = serialize_xprv(xtype, c, k, depth, fingerprint, child_number) return xprv, xpub def bip32_public_derivation(xpub, branch, sequence): xtype, depth, fingerprint, child_number, c, cK = deserialize_xpub(xpub) assert sequence.startswith(branch) sequence = sequence[len(branch):] for n in sequence.split('/'): if n == '': continue i = int(n) parent_cK = cK cK, c = CKD_pub(cK, c, i) depth += 1 fingerprint = hash_160(parent_cK)[0:4] child_number = bfh("%08X"%i) return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) def bip32_private_key(sequence, k, chain): for i in sequence: k, chain = CKD_priv(k, chain, i) return k