# -*- coding: utf-8 -*- # # Electrum - lightweight Bitcoin client # Copyright (C) 2011 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import hashlib import hmac from .util import bfh, bh2u, BitcoinException, print_error, assert_bytes, to_bytes, inv_dict from . import version from . import segwit_addr from . import constants from . import ecc from .crypto import Hash, sha256, hash_160 ################################## transactions COINBASE_MATURITY = 100 COIN = 100000000 TOTAL_COIN_SUPPLY_LIMIT_IN_BTC = 21000000 # supported types of transaction outputs TYPE_ADDRESS = 0 TYPE_PUBKEY = 1 TYPE_SCRIPT = 2 def rev_hex(s): return bh2u(bfh(s)[::-1]) def int_to_hex(i: int, length: int=1) -> str: """Converts int to little-endian hex string. `length` is the number of bytes available """ if not isinstance(i, int): raise TypeError('{} instead of int'.format(i)) range_size = pow(256, length) if i < -range_size/2 or i >= range_size: raise OverflowError('cannot convert int {} to hex ({} bytes)'.format(i, length)) if i < 0: # two's complement i = range_size + i s = hex(i)[2:].rstrip('L') s = "0"*(2*length - len(s)) + s return rev_hex(s) def script_num_to_hex(i: int) -> str: """See CScriptNum in Bitcoin Core. Encodes an integer as hex, to be used in script. ported from https://github.com/bitcoin/bitcoin/blob/8cbc5c4be4be22aca228074f087a374a7ec38be8/src/script/script.h#L326 """ if i == 0: return '' result = bytearray() neg = i < 0 absvalue = abs(i) while absvalue > 0: result.append(absvalue & 0xff) absvalue >>= 8 if result[-1] & 0x80: result.append(0x80 if neg else 0x00) elif neg: result[-1] |= 0x80 return bh2u(result) def var_int(i: int) -> str: # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer if i<0xfd: return int_to_hex(i) elif i<=0xffff: return "fd"+int_to_hex(i,2) elif i<=0xffffffff: return "fe"+int_to_hex(i,4) else: return "ff"+int_to_hex(i,8) def witness_push(item: str) -> str: """Returns data in the form it should be present in the witness. hex -> hex """ return var_int(len(item) // 2) + item def op_push(i: int) -> str: if i<0x4c: # OP_PUSHDATA1 return int_to_hex(i) elif i<=0xff: return '4c' + int_to_hex(i) elif i<=0xffff: return '4d' + int_to_hex(i,2) else: return '4e' + int_to_hex(i,4) def push_script(data: str) -> str: """Returns pushed data to the script, automatically choosing canonical opcodes depending on the length of the data. hex -> hex ported from https://github.com/btcsuite/btcd/blob/fdc2bc867bda6b351191b5872d2da8270df00d13/txscript/scriptbuilder.go#L128 """ data = bfh(data) from .transaction import opcodes data_len = len(data) # "small integer" opcodes if data_len == 0 or data_len == 1 and data[0] == 0: return bh2u(bytes([opcodes.OP_0])) elif data_len == 1 and data[0] <= 16: return bh2u(bytes([opcodes.OP_1 - 1 + data[0]])) elif data_len == 1 and data[0] == 0x81: return bh2u(bytes([opcodes.OP_1NEGATE])) return op_push(data_len) + bh2u(data) def add_number_to_script(i: int) -> bytes: return bfh(push_script(script_num_to_hex(i))) hash_encode = lambda x: bh2u(x[::-1]) hash_decode = lambda x: bfh(x)[::-1] hmac_sha_512 = lambda x, y: hmac.new(x, y, hashlib.sha512).digest() def is_new_seed(x, prefix=version.SEED_PREFIX): from . import mnemonic x = mnemonic.normalize_text(x) s = bh2u(hmac_sha_512(b"Seed version", x.encode('utf8'))) return s.startswith(prefix) def is_old_seed(seed): from . import old_mnemonic, mnemonic seed = mnemonic.normalize_text(seed) words = seed.split() try: # checks here are deliberately left weak for legacy reasons, see #3149 old_mnemonic.mn_decode(words) uses_electrum_words = True except Exception: uses_electrum_words = False try: seed = bfh(seed) is_hex = (len(seed) == 16 or len(seed) == 32) except Exception: is_hex = False return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24)) def seed_type(x): if is_old_seed(x): return 'old' elif is_new_seed(x): return 'standard' elif is_new_seed(x, version.SEED_PREFIX_SW): return 'segwit' elif is_new_seed(x, version.SEED_PREFIX_2FA): return '2fa' return '' is_seed = lambda x: bool(seed_type(x)) ############ functions from pywallet ##################### def hash160_to_b58_address(h160: bytes, addrtype): s = bytes([addrtype]) s += h160 return base_encode(s+Hash(s)[0:4], base=58) def b58_address_to_hash160(addr): addr = to_bytes(addr, 'ascii') _bytes = base_decode(addr, 25, base=58) return _bytes[0], _bytes[1:21] def hash160_to_p2pkh(h160, *, net=None): if net is None: net = constants.net return hash160_to_b58_address(h160, net.ADDRTYPE_P2PKH) def hash160_to_p2sh(h160, *, net=None): if net is None: net = constants.net return hash160_to_b58_address(h160, net.ADDRTYPE_P2SH) def public_key_to_p2pkh(public_key: bytes) -> str: return hash160_to_p2pkh(hash_160(public_key)) def hash_to_segwit_addr(h, witver, *, net=None): if net is None: net = constants.net return segwit_addr.encode(net.SEGWIT_HRP, witver, h) def public_key_to_p2wpkh(public_key): return hash_to_segwit_addr(hash_160(public_key), witver=0) def script_to_p2wsh(script): return hash_to_segwit_addr(sha256(bfh(script)), witver=0) def p2wpkh_nested_script(pubkey): pkh = bh2u(hash_160(bfh(pubkey))) return '00' + push_script(pkh) def p2wsh_nested_script(witness_script): wsh = bh2u(sha256(bfh(witness_script))) return '00' + push_script(wsh) def pubkey_to_address(txin_type, pubkey): if txin_type == 'p2pkh': return public_key_to_p2pkh(bfh(pubkey)) elif txin_type == 'p2wpkh': return public_key_to_p2wpkh(bfh(pubkey)) elif txin_type == 'p2wpkh-p2sh': scriptSig = p2wpkh_nested_script(pubkey) return hash160_to_p2sh(hash_160(bfh(scriptSig))) else: raise NotImplementedError(txin_type) def redeem_script_to_address(txin_type, redeem_script): if txin_type == 'p2sh': return hash160_to_p2sh(hash_160(bfh(redeem_script))) elif txin_type == 'p2wsh': return script_to_p2wsh(redeem_script) elif txin_type == 'p2wsh-p2sh': scriptSig = p2wsh_nested_script(redeem_script) return hash160_to_p2sh(hash_160(bfh(scriptSig))) else: raise NotImplementedError(txin_type) def script_to_address(script, *, net=None): from .transaction import get_address_from_output_script t, addr = get_address_from_output_script(bfh(script), net=net) assert t == TYPE_ADDRESS return addr def address_to_script(addr, *, net=None): if net is None: net = constants.net witver, witprog = segwit_addr.decode(net.SEGWIT_HRP, addr) if witprog is not None: if not (0 <= witver <= 16): raise BitcoinException('impossible witness version: {}'.format(witver)) OP_n = witver + 0x50 if witver > 0 else 0 script = bh2u(bytes([OP_n])) script += push_script(bh2u(bytes(witprog))) return script addrtype, hash_160 = b58_address_to_hash160(addr) if addrtype == net.ADDRTYPE_P2PKH: script = '76a9' # op_dup, op_hash_160 script += push_script(bh2u(hash_160)) script += '88ac' # op_equalverify, op_checksig elif addrtype == net.ADDRTYPE_P2SH: script = 'a9' # op_hash_160 script += push_script(bh2u(hash_160)) script += '87' # op_equal else: raise BitcoinException('unknown address type: {}'.format(addrtype)) return script def address_to_scripthash(addr): script = address_to_script(addr) return script_to_scripthash(script) def script_to_scripthash(script): h = sha256(bytes.fromhex(script))[0:32] return bh2u(bytes(reversed(h))) def public_key_to_p2pk_script(pubkey): script = push_script(pubkey) script += 'ac' # op_checksig return script __b58chars = b'123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' assert len(__b58chars) == 58 __b43chars = b'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:' assert len(__b43chars) == 43 def base_encode(v: bytes, base: int) -> str: """ encode v, which is a string of bytes, to base58.""" assert_bytes(v) if base not in (58, 43): raise ValueError('not supported base: {}'.format(base)) chars = __b58chars if base == 43: chars = __b43chars long_value = 0 for (i, c) in enumerate(v[::-1]): long_value += (256**i) * c result = bytearray() while long_value >= base: div, mod = divmod(long_value, base) result.append(chars[mod]) long_value = div result.append(chars[long_value]) # Bitcoin does a little leading-zero-compression: # leading 0-bytes in the input become leading-1s nPad = 0 for c in v: if c == 0x00: nPad += 1 else: break result.extend([chars[0]] * nPad) result.reverse() return result.decode('ascii') def base_decode(v, length, base): """ decode v into a string of len bytes.""" # assert_bytes(v) v = to_bytes(v, 'ascii') if base not in (58, 43): raise ValueError('not supported base: {}'.format(base)) chars = __b58chars if base == 43: chars = __b43chars long_value = 0 for (i, c) in enumerate(v[::-1]): digit = chars.find(bytes([c])) if digit == -1: raise ValueError('Forbidden character {} for base {}'.format(c, base)) long_value += digit * (base**i) result = bytearray() while long_value >= 256: div, mod = divmod(long_value, 256) result.append(mod) long_value = div result.append(long_value) nPad = 0 for c in v: if c == chars[0]: nPad += 1 else: break result.extend(b'\x00' * nPad) if length is not None and len(result) != length: return None result.reverse() return bytes(result) class InvalidChecksum(Exception): pass def EncodeBase58Check(vchIn): hash = Hash(vchIn) return base_encode(vchIn + hash[0:4], base=58) def DecodeBase58Check(psz): vchRet = base_decode(psz, None, base=58) key = vchRet[0:-4] csum = vchRet[-4:] hash = Hash(key) cs32 = hash[0:4] if cs32 != csum: raise InvalidChecksum('expected {}, actual {}'.format(bh2u(cs32), bh2u(csum))) else: return key # backwards compat # extended WIF for segwit (used in 3.0.x; but still used internally) # the keys in this dict should be a superset of what Imported Wallets can import SCRIPT_TYPES = { 'p2pkh':0, 'p2wpkh':1, 'p2wpkh-p2sh':2, 'p2sh':5, 'p2wsh':6, 'p2wsh-p2sh':7 } def serialize_privkey(secret: bytes, compressed: bool, txin_type: str, internal_use: bool=False) -> str: # we only export secrets inside curve range secret = ecc.ECPrivkey.normalize_secret_bytes(secret) if internal_use: prefix = bytes([(SCRIPT_TYPES[txin_type] + constants.net.WIF_PREFIX) & 255]) else: prefix = bytes([constants.net.WIF_PREFIX]) suffix = b'\01' if compressed else b'' vchIn = prefix + secret + suffix base58_wif = EncodeBase58Check(vchIn) if internal_use: return base58_wif else: return '{}:{}'.format(txin_type, base58_wif) def deserialize_privkey(key: str) -> (str, bytes, bool): if is_minikey(key): return 'p2pkh', minikey_to_private_key(key), False txin_type = None if ':' in key: txin_type, key = key.split(sep=':', maxsplit=1) if txin_type not in SCRIPT_TYPES: raise BitcoinException('unknown script type: {}'.format(txin_type)) try: vch = DecodeBase58Check(key) except BaseException: neutered_privkey = str(key)[:3] + '..' + str(key)[-2:] raise BitcoinException("cannot deserialize privkey {}" .format(neutered_privkey)) if txin_type is None: # keys exported in version 3.0.x encoded script type in first byte prefix_value = vch[0] - constants.net.WIF_PREFIX inverse_script_types = inv_dict(SCRIPT_TYPES) try: txin_type = inverse_script_types[prefix_value] except KeyError: raise BitcoinException('invalid prefix ({}) for WIF key (1)'.format(vch[0])) else: # all other keys must have a fixed first byte if vch[0] != constants.net.WIF_PREFIX: raise BitcoinException('invalid prefix ({}) for WIF key (2)'.format(vch[0])) if len(vch) not in [33, 34]: raise BitcoinException('invalid vch len for WIF key: {}'.format(len(vch))) compressed = len(vch) == 34 secret_bytes = vch[1:33] # we accept secrets outside curve range; cast into range here: secret_bytes = ecc.ECPrivkey.normalize_secret_bytes(secret_bytes) return txin_type, secret_bytes, compressed def is_compressed(sec): return deserialize_privkey(sec)[2] def address_from_private_key(sec): txin_type, privkey, compressed = deserialize_privkey(sec) public_key = ecc.ECPrivkey(privkey).get_public_key_hex(compressed=compressed) return pubkey_to_address(txin_type, public_key) def is_segwit_address(addr): try: witver, witprog = segwit_addr.decode(constants.net.SEGWIT_HRP, addr) except Exception as e: return False return witprog is not None def is_b58_address(addr): try: addrtype, h = b58_address_to_hash160(addr) except Exception as e: return False if addrtype not in [constants.net.ADDRTYPE_P2PKH, constants.net.ADDRTYPE_P2SH]: return False return addr == hash160_to_b58_address(h, addrtype) def is_address(addr): return is_segwit_address(addr) or is_b58_address(addr) def is_private_key(key): try: k = deserialize_privkey(key) return k is not False except: return False ########### end pywallet functions ####################### def is_minikey(text): # Minikeys are typically 22 or 30 characters, but this routine # permits any length of 20 or more provided the minikey is valid. # A valid minikey must begin with an 'S', be in base58, and when # suffixed with '?' have its SHA256 hash begin with a zero byte. # They are widely used in Casascius physical bitcoins. return (len(text) >= 20 and text[0] == 'S' and all(ord(c) in __b58chars for c in text) and sha256(text + '?')[0] == 0x00) def minikey_to_private_key(text): return sha256(text) ###################################### BIP32 ############################## BIP32_PRIME = 0x80000000 def protect_against_invalid_ecpoint(func): def func_wrapper(*args): n = args[-1] while True: is_prime = n & BIP32_PRIME try: return func(*args[:-1], n=n) except ecc.InvalidECPointException: print_error('bip32 protect_against_invalid_ecpoint: skipping index') n += 1 is_prime2 = n & BIP32_PRIME if is_prime != is_prime2: raise OverflowError() return func_wrapper # Child private key derivation function (from master private key) # k = master private key (32 bytes) # c = master chain code (extra entropy for key derivation) (32 bytes) # n = the index of the key we want to derive. (only 32 bits will be used) # If n is hardened (i.e. the 32nd bit is set), the resulting private key's # corresponding public key can NOT be determined without the master private key. # However, if n is not hardened, the resulting private key's corresponding # public key can be determined without the master private key. @protect_against_invalid_ecpoint def CKD_priv(k, c, n): if n < 0: raise ValueError('the bip32 index needs to be non-negative') is_prime = n & BIP32_PRIME return _CKD_priv(k, c, bfh(rev_hex(int_to_hex(n,4))), is_prime) def _CKD_priv(k, c, s, is_prime): try: keypair = ecc.ECPrivkey(k) except ecc.InvalidECPointException as e: raise BitcoinException('Impossible xprv (not within curve order)') from e cK = keypair.get_public_key_bytes(compressed=True) data = bytes([0]) + k + s if is_prime else cK + s I = hmac.new(c, data, hashlib.sha512).digest() I_left = ecc.string_to_number(I[0:32]) k_n = (I_left + ecc.string_to_number(k)) % ecc.CURVE_ORDER if I_left >= ecc.CURVE_ORDER or k_n == 0: raise ecc.InvalidECPointException() k_n = ecc.number_to_string(k_n, ecc.CURVE_ORDER) c_n = I[32:] return k_n, c_n # Child public key derivation function (from public key only) # K = master public key # c = master chain code # n = index of key we want to derive # This function allows us to find the nth public key, as long as n is # not hardened. If n is hardened, we need the master private key to find it. @protect_against_invalid_ecpoint def CKD_pub(cK, c, n): if n < 0: raise ValueError('the bip32 index needs to be non-negative') if n & BIP32_PRIME: raise Exception() return _CKD_pub(cK, c, bfh(rev_hex(int_to_hex(n,4)))) # helper function, callable with arbitrary string. # note: 's' does not need to fit into 32 bits here! (c.f. trustedcoin billing) def _CKD_pub(cK, c, s): I = hmac.new(c, cK + s, hashlib.sha512).digest() pubkey = ecc.ECPrivkey(I[0:32]) + ecc.ECPubkey(cK) if pubkey.is_at_infinity(): raise ecc.InvalidECPointException() cK_n = pubkey.get_public_key_bytes(compressed=True) c_n = I[32:] return cK_n, c_n def xprv_header(xtype, *, net=None): if net is None: net = constants.net return bfh("%08x" % net.XPRV_HEADERS[xtype]) def xpub_header(xtype, *, net=None): if net is None: net = constants.net return bfh("%08x" % net.XPUB_HEADERS[xtype]) def serialize_xprv(xtype, c, k, depth=0, fingerprint=b'\x00'*4, child_number=b'\x00'*4, *, net=None): if not ecc.is_secret_within_curve_range(k): raise BitcoinException('Impossible xprv (not within curve order)') xprv = xprv_header(xtype, net=net) \ + bytes([depth]) + fingerprint + child_number + c + bytes([0]) + k return EncodeBase58Check(xprv) def serialize_xpub(xtype, c, cK, depth=0, fingerprint=b'\x00'*4, child_number=b'\x00'*4, *, net=None): xpub = xpub_header(xtype, net=net) \ + bytes([depth]) + fingerprint + child_number + c + cK return EncodeBase58Check(xpub) def deserialize_xkey(xkey, prv, *, net=None): if net is None: net = constants.net xkey = DecodeBase58Check(xkey) if len(xkey) != 78: raise BitcoinException('Invalid length for extended key: {}' .format(len(xkey))) depth = xkey[4] fingerprint = xkey[5:9] child_number = xkey[9:13] c = xkey[13:13+32] header = int('0x' + bh2u(xkey[0:4]), 16) headers = net.XPRV_HEADERS if prv else net.XPUB_HEADERS if header not in headers.values(): raise BitcoinException('Invalid extended key format: {}' .format(hex(header))) xtype = list(headers.keys())[list(headers.values()).index(header)] n = 33 if prv else 32 K_or_k = xkey[13+n:] if prv and not ecc.is_secret_within_curve_range(K_or_k): raise BitcoinException('Impossible xprv (not within curve order)') return xtype, depth, fingerprint, child_number, c, K_or_k def deserialize_xpub(xkey, *, net=None): return deserialize_xkey(xkey, False, net=net) def deserialize_xprv(xkey, *, net=None): return deserialize_xkey(xkey, True, net=net) def xpub_type(x): return deserialize_xpub(x)[0] def is_xpub(text): try: deserialize_xpub(text) return True except: return False def is_xprv(text): try: deserialize_xprv(text) return True except: return False def xpub_from_xprv(xprv): xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) cK = ecc.ECPrivkey(k).get_public_key_bytes(compressed=True) return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) def bip32_root(seed, xtype): I = hmac.new(b"Bitcoin seed", seed, hashlib.sha512).digest() master_k = I[0:32] master_c = I[32:] # create xprv first, as that will check if master_k is within curve order xprv = serialize_xprv(xtype, master_c, master_k) cK = ecc.ECPrivkey(master_k).get_public_key_bytes(compressed=True) xpub = serialize_xpub(xtype, master_c, cK) return xprv, xpub def xpub_from_pubkey(xtype, cK): if cK[0] not in (0x02, 0x03): raise ValueError('Unexpected first byte: {}'.format(cK[0])) return serialize_xpub(xtype, b'\x00'*32, cK) def bip32_derivation(s): if not s.startswith('m/'): raise ValueError('invalid bip32 derivation path: {}'.format(s)) s = s[2:] for n in s.split('/'): if n == '': continue i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) yield i def is_bip32_derivation(x): try: [ i for i in bip32_derivation(x)] return True except : return False def bip32_private_derivation(xprv, branch, sequence): if not sequence.startswith(branch): raise ValueError('incompatible branch ({}) and sequence ({})' .format(branch, sequence)) if branch == sequence: return xprv, xpub_from_xprv(xprv) xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) sequence = sequence[len(branch):] for n in sequence.split('/'): if n == '': continue i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) parent_k = k k, c = CKD_priv(k, c, i) depth += 1 parent_cK = ecc.ECPrivkey(parent_k).get_public_key_bytes(compressed=True) fingerprint = hash_160(parent_cK)[0:4] child_number = bfh("%08X"%i) cK = ecc.ECPrivkey(k).get_public_key_bytes(compressed=True) xpub = serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) xprv = serialize_xprv(xtype, c, k, depth, fingerprint, child_number) return xprv, xpub def bip32_public_derivation(xpub, branch, sequence): xtype, depth, fingerprint, child_number, c, cK = deserialize_xpub(xpub) if not sequence.startswith(branch): raise ValueError('incompatible branch ({}) and sequence ({})' .format(branch, sequence)) sequence = sequence[len(branch):] for n in sequence.split('/'): if n == '': continue i = int(n) parent_cK = cK cK, c = CKD_pub(cK, c, i) depth += 1 fingerprint = hash_160(parent_cK)[0:4] child_number = bfh("%08X"%i) return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) def bip32_private_key(sequence, k, chain): for i in sequence: k, chain = CKD_priv(k, chain, i) return k