# -*- coding: utf-8 -*- #!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2011 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import hashlib import base64 import os import re import hmac import version from util import print_error, InvalidPassword import ecdsa import pyaes # Bitcoin network constants TESTNET = False ADDRTYPE_P2PKH = 0 ADDRTYPE_P2SH = 5 ADDRTYPE_P2WPKH = 6 XPRV_HEADER = 0x0488ade4 XPUB_HEADER = 0x0488b21e HEADERS_URL = "https://headers.electrum.org/blockchain_headers" def set_testnet(): global ADDRTYPE_P2PKH, ADDRTYPE_P2SH, ADDRTYPE_P2WPKH global XPRV_HEADER, XPUB_HEADER global TESTNET, HEADERS_URL TESTNET = True ADDRTYPE_P2PKH = 111 ADDRTYPE_P2SH = 196 ADDRTYPE_P2WPKH = 3 XPRV_HEADER = 0x04358394 XPUB_HEADER = 0x043587cf HEADERS_URL = "https://headers.electrum.org/testnet_headers" ################################## transactions FEE_STEP = 10000 MAX_FEE_RATE = 300000 FEE_TARGETS = [25, 10, 5, 2] COINBASE_MATURITY = 100 COIN = 100000000 # supported types of transction outputs TYPE_ADDRESS = 0 TYPE_PUBKEY = 1 TYPE_SCRIPT = 2 # AES encryption try: from Crypto.Cipher import AES except: AES = None def aes_encrypt_with_iv(key, iv, data): if AES: AES.block_size = 16 AES.key_size = 32 padlen = 16 - (len(data) % 16) if padlen == 0: padlen = 16 data += chr(padlen) * padlen e = AES.new(key, AES.MODE_CBC, iv).encrypt(data) return e else: aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv) aes = pyaes.Encrypter(aes_cbc) e = aes.feed(data) + aes.feed() # empty aes.feed() appends pkcs padding return e def aes_decrypt_with_iv(key, iv, data): if AES: cipher = AES.new(key, AES.MODE_CBC, iv) data = cipher.decrypt(data) padlen = ord(data[-1]) for i in data[-padlen:]: if ord(i) != padlen: raise InvalidPassword() return data[0:-padlen] else: aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv) aes = pyaes.Decrypter(aes_cbc) s = aes.feed(data) + aes.feed() # empty aes.feed() strips pkcs padding return s def EncodeAES(secret, s): iv = bytes(os.urandom(16)) ct = aes_encrypt_with_iv(secret, iv, s) e = iv + ct return base64.b64encode(e) def DecodeAES(secret, e): e = bytes(base64.b64decode(e)) iv, e = e[:16], e[16:] s = aes_decrypt_with_iv(secret, iv, e) return s def pw_encode(s, password): if password: secret = Hash(password) return EncodeAES(secret, s.encode("utf8")) else: return s def pw_decode(s, password): if password is not None: secret = Hash(password) try: d = DecodeAES(secret, s).decode("utf8") except Exception: raise InvalidPassword() return d else: return s def rev_hex(s): return s.decode('hex')[::-1].encode('hex') def int_to_hex(i, length=1): s = hex(i)[2:].rstrip('L') s = "0"*(2*length - len(s)) + s return rev_hex(s) def var_int(i): # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer if i<0xfd: return int_to_hex(i) elif i<=0xffff: return "fd"+int_to_hex(i,2) elif i<=0xffffffff: return "fe"+int_to_hex(i,4) else: return "ff"+int_to_hex(i,8) def op_push(i): if i<0x4c: return int_to_hex(i) elif i<0xff: return '4c' + int_to_hex(i) elif i<0xffff: return '4d' + int_to_hex(i,2) else: return '4e' + int_to_hex(i,4) def sha256(x): return hashlib.sha256(x).digest() def Hash(x): if type(x) is unicode: x=x.encode('utf-8') return sha256(sha256(x)) hash_encode = lambda x: x[::-1].encode('hex') hash_decode = lambda x: x.decode('hex')[::-1] hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest() def is_new_seed(x, prefix=version.SEED_PREFIX): import mnemonic x = mnemonic.normalize_text(x) s = hmac_sha_512("Seed version", x.encode('utf8')).encode('hex') return s.startswith(prefix) def is_old_seed(seed): import old_mnemonic words = seed.strip().split() try: old_mnemonic.mn_decode(words) uses_electrum_words = True except Exception: uses_electrum_words = False try: seed.decode('hex') is_hex = (len(seed) == 32 or len(seed) == 64) except Exception: is_hex = False return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24)) def seed_type(x): if is_old_seed(x): return 'old' elif is_new_seed(x): return 'standard' elif TESTNET and is_new_seed(x, version.SEED_PREFIX_SW): return 'segwit' elif is_new_seed(x, version.SEED_PREFIX_2FA): return '2fa' return '' is_seed = lambda x: bool(seed_type(x)) # pywallet openssl private key implementation def i2o_ECPublicKey(pubkey, compressed=False): # public keys are 65 bytes long (520 bits) # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed # compressed keys: where is 0x02 if y is even and 0x03 if y is odd if compressed: if pubkey.point.y() & 1: key = '03' + '%064x' % pubkey.point.x() else: key = '02' + '%064x' % pubkey.point.x() else: key = '04' + \ '%064x' % pubkey.point.x() + \ '%064x' % pubkey.point.y() return key.decode('hex') # end pywallet openssl private key implementation ############ functions from pywallet ##################### def hash_160(public_key): if 'ANDROID_DATA' in os.environ: from Crypto.Hash import RIPEMD md = RIPEMD.new() else: md = hashlib.new('ripemd') md.update(sha256(public_key)) return md.digest() def hash_160_to_bc_address(h160, addrtype, witness_program_version=1): s = chr(addrtype) if addrtype == ADDRTYPE_P2WPKH: s += chr(witness_program_version) + chr(0) s += h160 return base_encode(s+Hash(s)[0:4], base=58) def bc_address_to_hash_160(addr): bytes = base_decode(addr, 25, base=58) return ord(bytes[0]), bytes[1:21] def hash160_to_p2pkh(h160): return hash_160_to_bc_address(h160, ADDRTYPE_P2PKH) def hash160_to_p2sh(h160): return hash_160_to_bc_address(h160, ADDRTYPE_P2SH) def public_key_to_p2pkh(public_key): return hash160_to_p2pkh(hash_160(public_key)) def public_key_to_p2wpkh(public_key): return hash160_to_bc_address(hash_160(public_key), ADDRTYPE_P2WPKH) __b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' assert len(__b58chars) == 58 __b43chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:' assert len(__b43chars) == 43 def base_encode(v, base): """ encode v, which is a string of bytes, to base58.""" if base == 58: chars = __b58chars elif base == 43: chars = __b43chars long_value = 0L for (i, c) in enumerate(v[::-1]): long_value += (256**i) * ord(c) result = '' while long_value >= base: div, mod = divmod(long_value, base) result = chars[mod] + result long_value = div result = chars[long_value] + result # Bitcoin does a little leading-zero-compression: # leading 0-bytes in the input become leading-1s nPad = 0 for c in v: if c == '\0': nPad += 1 else: break return (chars[0]*nPad) + result def base_decode(v, length, base): """ decode v into a string of len bytes.""" if base == 58: chars = __b58chars elif base == 43: chars = __b43chars long_value = 0L for (i, c) in enumerate(v[::-1]): long_value += chars.find(c) * (base**i) result = '' while long_value >= 256: div, mod = divmod(long_value, 256) result = chr(mod) + result long_value = div result = chr(long_value) + result nPad = 0 for c in v: if c == chars[0]: nPad += 1 else: break result = chr(0)*nPad + result if length is not None and len(result) != length: return None return result def EncodeBase58Check(vchIn): hash = Hash(vchIn) return base_encode(vchIn + hash[0:4], base=58) def DecodeBase58Check(psz): vchRet = base_decode(psz, None, base=58) key = vchRet[0:-4] csum = vchRet[-4:] hash = Hash(key) cs32 = hash[0:4] if cs32 != csum: return None else: return key def PrivKeyToSecret(privkey): return privkey[9:9+32] def SecretToASecret(secret, compressed=False): addrtype = ADDRTYPE_P2PKH vchIn = chr((addrtype+128)&255) + secret if compressed: vchIn += '\01' return EncodeBase58Check(vchIn) def ASecretToSecret(key): addrtype = ADDRTYPE_P2PKH vch = DecodeBase58Check(key) if vch and vch[0] == chr((addrtype+128)&255): return vch[1:] elif is_minikey(key): return minikey_to_private_key(key) else: return False def regenerate_key(sec): b = ASecretToSecret(sec) if not b: return False b = b[0:32] return EC_KEY(b) def GetPubKey(pubkey, compressed=False): return i2o_ECPublicKey(pubkey, compressed) def GetSecret(pkey): return ('%064x' % pkey.secret).decode('hex') def is_compressed(sec): b = ASecretToSecret(sec) return len(b) == 33 def public_key_from_private_key(sec): # rebuild public key from private key, compressed or uncompressed pkey = regenerate_key(sec) assert pkey compressed = is_compressed(sec) public_key = GetPubKey(pkey.pubkey, compressed) return public_key.encode('hex') def address_from_private_key(sec): public_key = public_key_from_private_key(sec) address = public_key_to_p2pkh(public_key.decode('hex')) return address def is_valid(addr): return is_address(addr) def is_address(addr): try: addrtype, h = bc_address_to_hash_160(addr) except Exception: return False if addrtype not in [ADDRTYPE_P2PKH, ADDRTYPE_P2SH]: return False return addr == hash_160_to_bc_address(h, addrtype) def is_p2pkh(addr): if is_address(addr): addrtype, h = bc_address_to_hash_160(addr) return addrtype == ADDRTYPE_P2PKH def is_p2sh(addr): if is_address(addr): addrtype, h = bc_address_to_hash_160(addr) return addrtype == ADDRTYPE_P2SH def is_private_key(key): try: k = ASecretToSecret(key) return k is not False except: return False ########### end pywallet functions ####################### def is_minikey(text): # Minikeys are typically 22 or 30 characters, but this routine # permits any length of 20 or more provided the minikey is valid. # A valid minikey must begin with an 'S', be in base58, and when # suffixed with '?' have its SHA256 hash begin with a zero byte. # They are widely used in Casascius physical bitoins. return (len(text) >= 20 and text[0] == 'S' and all(c in __b58chars for c in text) and ord(sha256(text + '?')[0]) == 0) def minikey_to_private_key(text): return sha256(text) from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1 from ecdsa.curves import SECP256k1 from ecdsa.ellipticcurve import Point from ecdsa.util import string_to_number, number_to_string def msg_magic(message): varint = var_int(len(message)) encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)]) return "\x18Bitcoin Signed Message:\n" + encoded_varint + message def verify_message(address, sig, message): try: public_key, compressed = pubkey_from_signature(sig, message) # check public key using the address pubkey = point_to_ser(public_key.pubkey.point, compressed) addr = public_key_to_p2pkh(pubkey) if address != addr: raise Exception("Bad signature") # check message h = Hash(msg_magic(message)) public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) return True except Exception as e: print_error("Verification error: {0}".format(e)) return False def encrypt_message(message, pubkey): return EC_KEY.encrypt_message(message, pubkey.decode('hex')) def chunks(l, n): return [l[i:i+n] for i in xrange(0, len(l), n)] def ECC_YfromX(x,curved=curve_secp256k1, odd=True): _p = curved.p() _a = curved.a() _b = curved.b() for offset in range(128): Mx = x + offset My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p My = pow(My2, (_p+1)/4, _p ) if curved.contains_point(Mx,My): if odd == bool(My&1): return [My,offset] return [_p-My,offset] raise Exception('ECC_YfromX: No Y found') def negative_point(P): return Point( P.curve(), P.x(), -P.y(), P.order() ) def point_to_ser(P, comp=True ): if comp: return ( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ).decode('hex') return ( '04'+('%064x'%P.x())+('%064x'%P.y()) ).decode('hex') def ser_to_point(Aser): curve = curve_secp256k1 generator = generator_secp256k1 _r = generator.order() assert Aser[0] in ['\x02','\x03','\x04'] if Aser[0] == '\x04': return Point( curve, string_to_number(Aser[1:33]), string_to_number(Aser[33:]), _r ) Mx = string_to_number(Aser[1:]) return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0]=='\x03')[0], _r ) class MyVerifyingKey(ecdsa.VerifyingKey): @classmethod def from_signature(klass, sig, recid, h, curve): """ See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """ from ecdsa import util, numbertheory import msqr curveFp = curve.curve G = curve.generator order = G.order() # extract r,s from signature r, s = util.sigdecode_string(sig, order) # 1.1 x = r + (recid/2) * order # 1.3 alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p() beta = msqr.modular_sqrt(alpha, curveFp.p()) y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta # 1.4 the constructor checks that nR is at infinity R = Point(curveFp, x, y, order) # 1.5 compute e from message: e = string_to_number(h) minus_e = -e % order # 1.6 compute Q = r^-1 (sR - eG) inv_r = numbertheory.inverse_mod(r,order) Q = inv_r * ( s * R + minus_e * G ) return klass.from_public_point( Q, curve ) def pubkey_from_signature(sig, message): if len(sig) != 65: raise Exception("Wrong encoding") nV = ord(sig[0]) if nV < 27 or nV >= 35: raise Exception("Bad encoding") if nV >= 31: compressed = True nV -= 4 else: compressed = False recid = nV - 27 h = Hash(msg_magic(message)) return MyVerifyingKey.from_signature(sig[1:], recid, h, curve = SECP256k1), compressed class MySigningKey(ecdsa.SigningKey): """Enforce low S values in signatures""" def sign_number(self, number, entropy=None, k=None): curve = SECP256k1 G = curve.generator order = G.order() r, s = ecdsa.SigningKey.sign_number(self, number, entropy, k) if s > order/2: s = order - s return r, s class EC_KEY(object): def __init__( self, k ): secret = string_to_number(k) self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret ) self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret ) self.secret = secret def get_public_key(self, compressed=True): return point_to_ser(self.pubkey.point, compressed).encode('hex') def sign(self, msg_hash): private_key = MySigningKey.from_secret_exponent(self.secret, curve = SECP256k1) public_key = private_key.get_verifying_key() signature = private_key.sign_digest_deterministic(msg_hash, hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string) assert public_key.verify_digest(signature, msg_hash, sigdecode = ecdsa.util.sigdecode_string) return signature def sign_message(self, message, is_compressed): signature = self.sign(Hash(msg_magic(message))) for i in range(4): sig = chr(27 + i + (4 if is_compressed else 0)) + signature try: self.verify_message(sig, message) return sig except Exception: continue else: raise Exception("error: cannot sign message") def verify_message(self, sig, message): public_key, compressed = pubkey_from_signature(sig, message) # check public key if point_to_ser(public_key.pubkey.point, compressed) != point_to_ser(self.pubkey.point, compressed): raise Exception("Bad signature") # check message h = Hash(msg_magic(message)) public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) # ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac @classmethod def encrypt_message(self, message, pubkey): pk = ser_to_point(pubkey) if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()): raise Exception('invalid pubkey') ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2,256)), generator_secp256k1.order()) ephemeral = EC_KEY(ephemeral_exponent) ecdh_key = point_to_ser(pk * ephemeral.privkey.secret_multiplier) key = hashlib.sha512(ecdh_key).digest() iv, key_e, key_m = key[0:16], key[16:32], key[32:] ciphertext = aes_encrypt_with_iv(key_e, iv, message) ephemeral_pubkey = ephemeral.get_public_key(compressed=True).decode('hex') encrypted = 'BIE1' + ephemeral_pubkey + ciphertext mac = hmac.new(key_m, encrypted, hashlib.sha256).digest() return base64.b64encode(encrypted + mac) def decrypt_message(self, encrypted): encrypted = base64.b64decode(encrypted) if len(encrypted) < 85: raise Exception('invalid ciphertext: length') magic = encrypted[:4] ephemeral_pubkey = encrypted[4:37] ciphertext = encrypted[37:-32] mac = encrypted[-32:] if magic != 'BIE1': raise Exception('invalid ciphertext: invalid magic bytes') try: ephemeral_pubkey = ser_to_point(ephemeral_pubkey) except AssertionError, e: raise Exception('invalid ciphertext: invalid ephemeral pubkey') if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ephemeral_pubkey.x(), ephemeral_pubkey.y()): raise Exception('invalid ciphertext: invalid ephemeral pubkey') ecdh_key = point_to_ser(ephemeral_pubkey * self.privkey.secret_multiplier) key = hashlib.sha512(ecdh_key).digest() iv, key_e, key_m = key[0:16], key[16:32], key[32:] if mac != hmac.new(key_m, encrypted[:-32], hashlib.sha256).digest(): raise InvalidPassword() return aes_decrypt_with_iv(key_e, iv, ciphertext) ###################################### BIP32 ############################## random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) ) BIP32_PRIME = 0x80000000 def get_pubkeys_from_secret(secret): # public key private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 ) public_key = private_key.get_verifying_key() K = public_key.to_string() K_compressed = GetPubKey(public_key.pubkey,True) return K, K_compressed # Child private key derivation function (from master private key) # k = master private key (32 bytes) # c = master chain code (extra entropy for key derivation) (32 bytes) # n = the index of the key we want to derive. (only 32 bits will be used) # If n is negative (i.e. the 32nd bit is set), the resulting private key's # corresponding public key can NOT be determined without the master private key. # However, if n is positive, the resulting private key's corresponding # public key can be determined without the master private key. def CKD_priv(k, c, n): is_prime = n & BIP32_PRIME return _CKD_priv(k, c, rev_hex(int_to_hex(n,4)).decode('hex'), is_prime) def _CKD_priv(k, c, s, is_prime): order = generator_secp256k1.order() keypair = EC_KEY(k) cK = GetPubKey(keypair.pubkey,True) data = chr(0) + k + s if is_prime else cK + s I = hmac.new(c, data, hashlib.sha512).digest() k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order ) c_n = I[32:] return k_n, c_n # Child public key derivation function (from public key only) # K = master public key # c = master chain code # n = index of key we want to derive # This function allows us to find the nth public key, as long as n is # non-negative. If n is negative, we need the master private key to find it. def CKD_pub(cK, c, n): if n & BIP32_PRIME: raise return _CKD_pub(cK, c, rev_hex(int_to_hex(n,4)).decode('hex')) # helper function, callable with arbitrary string def _CKD_pub(cK, c, s): order = generator_secp256k1.order() I = hmac.new(c, cK + s, hashlib.sha512).digest() curve = SECP256k1 pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK) public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 ) c_n = I[32:] cK_n = GetPubKey(public_key.pubkey,True) return cK_n, c_n def xprv_header(xtype): return ("%08x"%(XPRV_HEADER + xtype)).decode('hex') def xpub_header(xtype): return ("%08x"%(XPUB_HEADER + xtype)).decode('hex') def serialize_xprv(xtype, c, k, depth=0, fingerprint=chr(0)*4, child_number=chr(0)*4): xprv = xprv_header(xtype) + chr(depth) + fingerprint + child_number + c + chr(0) + k return EncodeBase58Check(xprv) def serialize_xpub(xtype, c, cK, depth=0, fingerprint=chr(0)*4, child_number=chr(0)*4): xpub = xpub_header(xtype) + chr(depth) + fingerprint + child_number + c + cK return EncodeBase58Check(xpub) def deserialize_xkey(xkey, prv): xkey = DecodeBase58Check(xkey) if len(xkey) != 78: raise BaseException('Invalid length') depth = ord(xkey[4]) fingerprint = xkey[5:9] child_number = xkey[9:13] c = xkey[13:13+32] header = XPRV_HEADER if prv else XPUB_HEADER xtype = int('0x' + xkey[0:4].encode('hex'), 16) - header if xtype not in ([0, 1] if TESTNET else [0]): raise BaseException('Invalid header') n = 33 if prv else 32 K_or_k = xkey[13+n:] return xtype, depth, fingerprint, child_number, c, K_or_k def deserialize_xpub(xkey): return deserialize_xkey(xkey, False) def deserialize_xprv(xkey): return deserialize_xkey(xkey, True) def is_xpub(text): try: deserialize_xpub(text) return True except: return False def is_xprv(text): try: deserialize_xprv(text) return True except: return False def xpub_from_xprv(xprv): xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) K, cK = get_pubkeys_from_secret(k) return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) def bip32_root(seed, xtype): I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() master_k = I[0:32] master_c = I[32:] K, cK = get_pubkeys_from_secret(master_k) xprv = serialize_xprv(xtype, master_c, master_k) xpub = serialize_xpub(xtype, master_c, cK) return xprv, xpub def xpub_from_pubkey(xtype, cK): assert cK[0] in ['\x02','\x03'] return serialize_xpub(xtype, chr(0)*32, cK) def bip32_private_derivation(xprv, branch, sequence): assert sequence.startswith(branch) if branch == sequence: return xprv, xpub_from_xprv(xprv) xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) sequence = sequence[len(branch):] for n in sequence.split('/'): if n == '': continue i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) parent_k = k k, c = CKD_priv(k, c, i) depth += 1 _, parent_cK = get_pubkeys_from_secret(parent_k) fingerprint = hash_160(parent_cK)[0:4] child_number = ("%08X"%i).decode('hex') K, cK = get_pubkeys_from_secret(k) xpub = serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) xprv = serialize_xprv(xtype, c, k, depth, fingerprint, child_number) return xprv, xpub def bip32_public_derivation(xpub, branch, sequence): xtype, depth, fingerprint, child_number, c, cK = deserialize_xpub(xpub) assert sequence.startswith(branch) sequence = sequence[len(branch):] for n in sequence.split('/'): if n == '': continue i = int(n) parent_cK = cK cK, c = CKD_pub(cK, c, i) depth += 1 fingerprint = hash_160(parent_cK)[0:4] child_number = ("%08X"%i).decode('hex') return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) def bip32_private_key(sequence, k, chain): for i in sequence: k, chain = CKD_priv(k, chain, i) return SecretToASecret(k, True) def xkeys_from_seed(seed, passphrase, derivation): from mnemonic import Mnemonic xprv, xpub = bip32_root(Mnemonic.mnemonic_to_seed(seed, passphrase), 0) xprv, xpub = bip32_private_derivation(xprv, "m/", derivation) return xprv, xpub