#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2011 thomasv@gitorious # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # Note: The deserialization code originally comes from ABE. import bitcoin from bitcoin import * from util import print_error, profiler import time import sys import struct # # Workalike python implementation of Bitcoin's CDataStream class. # import struct import StringIO import random NO_SIGNATURE = 'ff' class SerializationError(Exception): """ Thrown when there's a problem deserializing or serializing """ class BCDataStream(object): def __init__(self): self.input = None self.read_cursor = 0 def clear(self): self.input = None self.read_cursor = 0 def write(self, bytes): # Initialize with string of bytes if self.input is None: self.input = bytes else: self.input += bytes def read_string(self): # Strings are encoded depending on length: # 0 to 252 : 1-byte-length followed by bytes (if any) # 253 to 65,535 : byte'253' 2-byte-length followed by bytes # 65,536 to 4,294,967,295 : byte '254' 4-byte-length followed by bytes # ... and the Bitcoin client is coded to understand: # greater than 4,294,967,295 : byte '255' 8-byte-length followed by bytes of string # ... but I don't think it actually handles any strings that big. if self.input is None: raise SerializationError("call write(bytes) before trying to deserialize") try: length = self.read_compact_size() except IndexError: raise SerializationError("attempt to read past end of buffer") return self.read_bytes(length) def write_string(self, string): # Length-encoded as with read-string self.write_compact_size(len(string)) self.write(string) def read_bytes(self, length): try: result = self.input[self.read_cursor:self.read_cursor+length] self.read_cursor += length return result except IndexError: raise SerializationError("attempt to read past end of buffer") return '' def read_boolean(self): return self.read_bytes(1)[0] != chr(0) def read_int16(self): return self._read_num('= opcodes.OP_SINGLEBYTE_END: opcode <<= 8 opcode |= ord(bytes[i]) i += 1 if opcode <= opcodes.OP_PUSHDATA4: nSize = opcode if opcode == opcodes.OP_PUSHDATA1: nSize = ord(bytes[i]) i += 1 elif opcode == opcodes.OP_PUSHDATA2: (nSize,) = struct.unpack_from(' 0: result += " " if opcode <= opcodes.OP_PUSHDATA4: result += "%d:"%(opcode,) result += short_hex(vch) else: result += script_GetOpName(opcode) return result def match_decoded(decoded, to_match): if len(decoded) != len(to_match): return False; for i in range(len(decoded)): if to_match[i] == opcodes.OP_PUSHDATA4 and decoded[i][0] <= opcodes.OP_PUSHDATA4 and decoded[i][0]>0: continue # Opcodes below OP_PUSHDATA4 all just push data onto stack, and are equivalent. if to_match[i] != decoded[i][0]: return False return True def parse_sig(x_sig): s = [] for sig in x_sig: if sig[-2:] == '01': s.append(sig[:-2]) else: assert sig == NO_SIGNATURE s.append(None) return s def is_extended_pubkey(x_pubkey): return x_pubkey[0:2] in ['fe', 'ff'] def x_to_xpub(x_pubkey): if x_pubkey[0:2] == 'ff': from account import BIP32_Account xpub, s = BIP32_Account.parse_xpubkey(x_pubkey) return xpub def parse_xpub(x_pubkey): if x_pubkey[0:2] in ['02','03','04']: pubkey = x_pubkey elif x_pubkey[0:2] == 'ff': from account import BIP32_Account xpub, s = BIP32_Account.parse_xpubkey(x_pubkey) pubkey = BIP32_Account.derive_pubkey_from_xpub(xpub, s[0], s[1]) elif x_pubkey[0:2] == 'fe': from account import OldAccount mpk, s = OldAccount.parse_xpubkey(x_pubkey) pubkey = OldAccount.get_pubkey_from_mpk(mpk.decode('hex'), s[0], s[1]) elif x_pubkey[0:2] == 'fd': addrtype = ord(x_pubkey[2:4].decode('hex')) hash160 = x_pubkey[4:].decode('hex') pubkey = None address = hash_160_to_bc_address(hash160, addrtype) else: raise BaseException("Cannnot parse pubkey") if pubkey: address = public_key_to_bc_address(pubkey.decode('hex')) return pubkey, address def parse_scriptSig(d, bytes): try: decoded = [ x for x in script_GetOp(bytes) ] except Exception: # coinbase transactions raise an exception print_error("cannot find address in input script", bytes.encode('hex')) return # payto_pubkey match = [ opcodes.OP_PUSHDATA4 ] if match_decoded(decoded, match): sig = decoded[0][1].encode('hex') d['address'] = "(pubkey)" d['signatures'] = [sig] d['num_sig'] = 1 d['x_pubkeys'] = ["(pubkey)"] d['pubkeys'] = ["(pubkey)"] return # non-generated TxIn transactions push a signature # (seventy-something bytes) and then their public key # (65 bytes) onto the stack: match = [ opcodes.OP_PUSHDATA4, opcodes.OP_PUSHDATA4 ] if match_decoded(decoded, match): sig = decoded[0][1].encode('hex') x_pubkey = decoded[1][1].encode('hex') try: signatures = parse_sig([sig]) pubkey, address = parse_xpub(x_pubkey) except: import traceback traceback.print_exc(file=sys.stdout) print_error("cannot find address in input script", bytes.encode('hex')) return d['signatures'] = signatures d['x_pubkeys'] = [x_pubkey] d['num_sig'] = 1 d['pubkeys'] = [pubkey] d['address'] = address return # p2sh transaction, m of n match = [ opcodes.OP_0 ] + [ opcodes.OP_PUSHDATA4 ] * (len(decoded) - 1) if not match_decoded(decoded, match): print_error("cannot find address in input script", bytes.encode('hex')) return x_sig = [x[1].encode('hex') for x in decoded[1:-1]] dec2 = [ x for x in script_GetOp(decoded[-1][1]) ] m = dec2[0][0] - opcodes.OP_1 + 1 n = dec2[-2][0] - opcodes.OP_1 + 1 op_m = opcodes.OP_1 + m - 1 op_n = opcodes.OP_1 + n - 1 match_multisig = [ op_m ] + [opcodes.OP_PUSHDATA4]*n + [ op_n, opcodes.OP_CHECKMULTISIG ] if not match_decoded(dec2, match_multisig): print_error("cannot find address in input script", bytes.encode('hex')) return x_pubkeys = map(lambda x: x[1].encode('hex'), dec2[1:-2]) pubkeys = [parse_xpub(x)[0] for x in x_pubkeys] # xpub, addr = parse_xpub() redeemScript = Transaction.multisig_script(pubkeys, m) # write result in d d['num_sig'] = m d['signatures'] = parse_sig(x_sig) d['x_pubkeys'] = x_pubkeys d['pubkeys'] = pubkeys d['redeemScript'] = redeemScript d['address'] = hash_160_to_bc_address(hash_160(redeemScript.decode('hex')), 5) def get_address_from_output_script(bytes): decoded = [ x for x in script_GetOp(bytes) ] # The Genesis Block, self-payments, and pay-by-IP-address payments look like: # 65 BYTES:... CHECKSIG match = [ opcodes.OP_PUSHDATA4, opcodes.OP_CHECKSIG ] if match_decoded(decoded, match): return 'pubkey', decoded[0][1].encode('hex') # Pay-by-Bitcoin-address TxOuts look like: # DUP HASH160 20 BYTES:... EQUALVERIFY CHECKSIG match = [ opcodes.OP_DUP, opcodes.OP_HASH160, opcodes.OP_PUSHDATA4, opcodes.OP_EQUALVERIFY, opcodes.OP_CHECKSIG ] if match_decoded(decoded, match): return 'address', hash_160_to_bc_address(decoded[2][1]) # p2sh match = [ opcodes.OP_HASH160, opcodes.OP_PUSHDATA4, opcodes.OP_EQUAL ] if match_decoded(decoded, match): return 'address', hash_160_to_bc_address(decoded[1][1],5) return 'script', bytes def parse_input(vds): d = {} prevout_hash = hash_encode(vds.read_bytes(32)) prevout_n = vds.read_uint32() scriptSig = vds.read_bytes(vds.read_compact_size()) d['scriptSig'] = scriptSig.encode('hex') sequence = vds.read_uint32() if prevout_hash == '00'*32: d['is_coinbase'] = True else: d['is_coinbase'] = False d['prevout_hash'] = prevout_hash d['prevout_n'] = prevout_n d['sequence'] = sequence d['pubkeys'] = [] d['signatures'] = {} d['address'] = None if scriptSig: parse_scriptSig(d, scriptSig) return d def parse_output(vds, i): d = {} d['value'] = vds.read_int64() scriptPubKey = vds.read_bytes(vds.read_compact_size()) d['type'], d['address'] = get_address_from_output_script(scriptPubKey) d['scriptPubKey'] = scriptPubKey.encode('hex') d['prevout_n'] = i return d def deserialize(raw): vds = BCDataStream() vds.write(raw.decode('hex')) d = {} start = vds.read_cursor d['version'] = vds.read_int32() n_vin = vds.read_compact_size() d['inputs'] = list(parse_input(vds) for i in xrange(n_vin)) n_vout = vds.read_compact_size() d['outputs'] = list(parse_output(vds,i) for i in xrange(n_vout)) d['lockTime'] = vds.read_uint32() return d def push_script(x): return op_push(len(x)/2) + x class Transaction: def __str__(self): if self.raw is None: self.raw = self.serialize() return self.raw def __init__(self, raw): if raw is None: self.raw = None elif type(raw) in [str, unicode]: self.raw = raw.strip() if raw else None elif type(raw) is dict: self.raw = raw['hex'] else: raise BaseException("cannot initialize transaction", raw) self.inputs = None def update(self, raw): self.raw = raw self.inputs = None self.deserialize() def update_signatures(self, raw): """Add new signatures to a transaction""" d = deserialize(raw) for i, txin in enumerate(self.inputs): sigs1 = txin.get('signatures') sigs2 = d['inputs'][i].get('signatures') for sig in sigs2: if sig in sigs1: continue for_sig = Hash(self.tx_for_sig(i).decode('hex')) # der to string order = ecdsa.ecdsa.generator_secp256k1.order() r, s = ecdsa.util.sigdecode_der(sig.decode('hex'), order) sig_string = ecdsa.util.sigencode_string(r, s, order) pubkeys = txin.get('pubkeys') compressed = True for recid in range(4): public_key = MyVerifyingKey.from_signature(sig_string, recid, for_sig, curve = SECP256k1) pubkey = point_to_ser(public_key.pubkey.point, compressed).encode('hex') if pubkey in pubkeys: public_key.verify_digest(sig_string, for_sig, sigdecode = ecdsa.util.sigdecode_string) j = pubkeys.index(pubkey) print_error("adding sig", i, j, pubkey, sig) self.inputs[i]['signatures'][j] = sig self.inputs[i]['x_pubkeys'][j] = pubkey break # redo raw self.raw = self.serialize() def deserialize(self): if self.raw is None: self.raw = self.serialize() if self.inputs is not None: return d = deserialize(self.raw) self.inputs = d['inputs'] self.outputs = [(x['type'], x['address'], x['value']) for x in d['outputs']] self.locktime = d['lockTime'] return d @classmethod def from_io(klass, inputs, outputs, locktime=0): self = klass(None) self.inputs = inputs self.outputs = outputs self.locktime = locktime return self @classmethod def sweep(klass, privkeys, network, to_address, fee): inputs = [] keypairs = {} for privkey in privkeys: pubkey = public_key_from_private_key(privkey) address = address_from_private_key(privkey) u = network.synchronous_get(('blockchain.address.listunspent',[address])) pay_script = klass.pay_script('address', address) for item in u: item['scriptPubKey'] = pay_script item['redeemPubkey'] = pubkey item['address'] = address item['prevout_hash'] = item['tx_hash'] item['prevout_n'] = item['tx_pos'] item['pubkeys'] = [pubkey] item['x_pubkeys'] = [pubkey] item['signatures'] = [None] item['num_sig'] = 1 inputs += u keypairs[pubkey] = privkey if not inputs: return total = sum(i.get('value') for i in inputs) - fee outputs = [('address', to_address, total)] self = klass.from_io(inputs, outputs) self.sign(keypairs) return self @classmethod def multisig_script(klass, public_keys, m): n = len(public_keys) assert n <= 15 assert m <= n op_m = format(opcodes.OP_1 + m - 1, 'x') op_n = format(opcodes.OP_1 + n - 1, 'x') keylist = [op_push(len(k)/2) + k for k in public_keys] return op_m + ''.join(keylist) + op_n + 'ae' @classmethod def pay_script(self, output_type, addr): if output_type == 'script': return addr.encode('hex') elif output_type == 'address': addrtype, hash_160 = bc_address_to_hash_160(addr) if addrtype == 0: script = '76a9' # op_dup, op_hash_160 script += push_script(hash_160.encode('hex')) script += '88ac' # op_equalverify, op_checksig elif addrtype == 5: script = 'a9' # op_hash_160 script += push_script(hash_160.encode('hex')) script += '87' # op_equal else: raise else: raise return script @classmethod def input_script(self, txin, i, for_sig): # for_sig: # -1 : do not sign, estimate length # i>=0 : serialized tx for signing input i # None : add all known signatures p2sh = txin.get('redeemScript') is not None num_sig = txin['num_sig'] if p2sh else 1 address = txin['address'] x_signatures = txin['signatures'] signatures = filter(None, x_signatures) is_complete = len(signatures) == num_sig if for_sig in [-1, None]: # if we have enough signatures, we use the actual pubkeys # use extended pubkeys (with bip32 derivation) if for_sig == -1: # we assume that signature will be 0x48 bytes long pubkeys = txin['pubkeys'] sig_list = [ "00" * 0x48 ] * num_sig elif is_complete: pubkeys = txin['pubkeys'] sig_list = ((sig + '01') for sig in signatures) else: pubkeys = txin['x_pubkeys'] sig_list = ((sig + '01') if sig else NO_SIGNATURE for sig in x_signatures) script = ''.join(push_script(x) for x in sig_list) if not p2sh: x_pubkey = pubkeys[0] if x_pubkey is None: addrtype, h160 = bc_address_to_hash_160(txin['address']) x_pubkey = 'fd' + (chr(addrtype) + h160).encode('hex') script += push_script(x_pubkey) else: script = '00' + script # put op_0 in front of script redeem_script = self.multisig_script(pubkeys, num_sig) script += push_script(redeem_script) elif for_sig==i: script = txin['redeemScript'] if p2sh else self.pay_script('address', address) else: script = '' return script @classmethod def serialize_input(self, txin, i, for_sig): # Prev hash and index s = txin['prevout_hash'].decode('hex')[::-1].encode('hex') s = int_to_hex(txin['prevout_n'], 4) # Script length, script, sequence script = self.input_script(txin, i, for_sig) s += var_int(len(script) / 2) s += script s += "ffffffff" return s def BIP_LI01_sort(self): # See https://github.com/kristovatlas/rfc/blob/master/bips/bip-li01.mediawiki self.inputs.sort(key = lambda i: (i['prevout_hash'], i['prevout_n'])) self.outputs.sort(key = lambda o: (o[2], self.pay_script(o[0], o[1]))) def serialize(self, for_sig=None): inputs = self.inputs outputs = self.outputs s = int_to_hex(1,4) # version s += var_int( len(inputs) ) # number of inputs for i, txin in enumerate(inputs): s += self.serialize_input(txin, i, for_sig) s += var_int( len(outputs) ) # number of outputs for output in outputs: output_type, addr, amount = output s += int_to_hex( amount, 8) # amount script = self.pay_script(output_type, addr) s += var_int( len(script)/2 ) # script length s += script # script s += int_to_hex(0,4) # lock time if for_sig is not None and for_sig != -1: s += int_to_hex(1, 4) # hash type return s def tx_for_sig(self,i): return self.serialize(for_sig = i) def hash(self): return Hash(self.raw.decode('hex') )[::-1].encode('hex') def add_input(self, input): self.inputs.append(input) self.raw = None def input_value(self): return sum(x['value'] for x in self.inputs) def output_value(self): return sum( val for tp,addr,val in self.outputs) def get_fee(self): return self.input_value() - self.output_value() @classmethod def fee_for_size(self, fee_per_kb, size): '''Given a fee per kB in satoshis, and a tx size in bytes, returns the transaction fee.''' fee = int(fee_per_kb * size / 1000.) if fee < MIN_RELAY_TX_FEE: fee = MIN_RELAY_TX_FEE return fee @profiler def estimated_size(self): '''Return an estimated tx size in bytes.''' return len(self.serialize(-1)) / 2 # ASCII hex string @classmethod def estimated_input_size(self, txin): '''Return an estimated of serialized input size in bytes.''' return len(self.serialize_input(txin, -1, -1)) / 2 def estimated_fee(self, fee_per_kb): '''Return an estimated fee given a fee per kB in satoshis.''' return self.fee_for_size(fee_per_kb, self.estimated_size()) def signature_count(self): r = 0 s = 0 for txin in self.inputs: if txin.get('is_coinbase'): continue signatures = filter(None, txin.get('signatures',[])) s += len(signatures) r += txin.get('num_sig',-1) return s, r def is_complete(self): s, r = self.signature_count() return r == s def inputs_without_script(self): out = set() for i, txin in enumerate(self.inputs): if txin.get('scriptSig') == '': out.add(i) return out def inputs_to_sign(self): out = set() for txin in self.inputs: num_sig = txin.get('num_sig') if num_sig is None: continue x_signatures = txin['signatures'] signatures = filter(None, x_signatures) if len(signatures) == num_sig: # input is complete continue for k, x_pubkey in enumerate(txin['x_pubkeys']): if x_signatures[k] is not None: # this pubkey already signed continue out.add(x_pubkey) return out def sign(self, keypairs): for i, txin in enumerate(self.inputs): num = txin['num_sig'] for x_pubkey in txin['x_pubkeys']: signatures = filter(None, txin['signatures']) if len(signatures) == num: # txin is complete break if x_pubkey in keypairs.keys(): print_error("adding signature for", x_pubkey) # add pubkey to txin txin = self.inputs[i] x_pubkeys = txin['x_pubkeys'] ii = x_pubkeys.index(x_pubkey) sec = keypairs[x_pubkey] pubkey = public_key_from_private_key(sec) txin['x_pubkeys'][ii] = pubkey txin['pubkeys'][ii] = pubkey self.inputs[i] = txin # add signature for_sig = Hash(self.tx_for_sig(i).decode('hex')) pkey = regenerate_key(sec) secexp = pkey.secret private_key = bitcoin.MySigningKey.from_secret_exponent( secexp, curve = SECP256k1 ) public_key = private_key.get_verifying_key() sig = private_key.sign_digest_deterministic( for_sig, hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_der ) assert public_key.verify_digest( sig, for_sig, sigdecode = ecdsa.util.sigdecode_der) txin['signatures'][ii] = sig.encode('hex') self.inputs[i] = txin print_error("is_complete", self.is_complete()) self.raw = self.serialize() def get_outputs(self): """convert pubkeys to addresses""" o = [] for type, x, v in self.outputs: if type == 'address': addr = x elif type == 'pubkey': addr = public_key_to_bc_address(x.decode('hex')) else: addr = 'SCRIPT ' + x.encode('hex') o.append((addr,v)) # consider using yield (addr, v) return o def get_output_addresses(self): return [addr for addr, val in self.get_outputs()] def has_address(self, addr): return (addr in self.get_output_addresses()) or (addr in (tx.get("address") for tx in self.inputs)) def as_dict(self): if self.raw is None: self.raw = self.serialize() self.deserialize() out = { 'hex': self.raw, 'complete': self.is_complete() } return out def requires_fee(self, wallet): # see https://en.bitcoin.it/wiki/Transaction_fees # # size must be smaller than 1 kbyte for free tx size = len(self.serialize(-1))/2 if size >= 10000: return True # all outputs must be 0.01 BTC or larger for free tx for addr, value in self.get_outputs(): if value < 1000000: return True # priority must be large enough for free tx threshold = 57600000 weight = 0 for txin in self.inputs: age = wallet.get_confirmations(txin["prevout_hash"])[0] weight += txin["value"] * age priority = weight / size print_error(priority, threshold) return priority < threshold