You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

517 lines
16 KiB

#!/usr/bin/env python
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2011 thomasv@gitorious
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import hashlib, base64, ecdsa, re
from util import print_error
def rev_hex(s):
return s.decode('hex')[::-1].encode('hex')
def int_to_hex(i, length=1):
s = hex(i)[2:].rstrip('L')
s = "0"*(2*length - len(s)) + s
return rev_hex(s)
def var_int(i):
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
if i<0xfd:
return int_to_hex(i)
elif i<=0xffff:
return "fd"+int_to_hex(i,2)
elif i<=0xffffffff:
return "fe"+int_to_hex(i,4)
else:
return "ff"+int_to_hex(i,8)
def op_push(i):
if i<0x4c:
return int_to_hex(i)
elif i<0xff:
return '4c' + int_to_hex(i)
elif i<0xffff:
return '4d' + int_to_hex(i,2)
else:
return '4e' + int_to_hex(i,4)
Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest()
hash_encode = lambda x: x[::-1].encode('hex')
hash_decode = lambda x: x.decode('hex')[::-1]
# pywallet openssl private key implementation
def i2d_ECPrivateKey(pkey, compressed=False):
if compressed:
key = '3081d30201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107042102' + \
'%064x' % _Gx + \
'022100' + \
'%064x' % _r + \
'020101a124032200'
else:
key = '308201130201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107044104' + \
'%064x' % _Gx + \
'%064x' % _Gy + \
'022100' + \
'%064x' % _r + \
'020101a144034200'
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
def i2o_ECPublicKey(pubkey, compressed=False):
# public keys are 65 bytes long (520 bits)
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
if compressed:
if pubkey.point.y() & 1:
key = '03' + '%064x' % pubkey.point.x()
else:
key = '02' + '%064x' % pubkey.point.x()
else:
key = '04' + \
'%064x' % pubkey.point.x() + \
'%064x' % pubkey.point.y()
return key.decode('hex')
# end pywallet openssl private key implementation
############ functions from pywallet #####################
def hash_160(public_key):
try:
md = hashlib.new('ripemd160')
md.update(hashlib.sha256(public_key).digest())
return md.digest()
except:
import ripemd
md = ripemd.new(hashlib.sha256(public_key).digest())
return md.digest()
def public_key_to_bc_address(public_key):
h160 = hash_160(public_key)
return hash_160_to_bc_address(h160)
def hash_160_to_bc_address(h160, addrtype = 0):
vh160 = chr(addrtype) + h160
h = Hash(vh160)
addr = vh160 + h[0:4]
return b58encode(addr)
def bc_address_to_hash_160(addr):
bytes = b58decode(addr, 25)
return ord(bytes[0]), bytes[1:21]
def encode_point(pubkey, compressed=False):
order = generator_secp256k1.order()
p = pubkey.pubkey.point
x_str = ecdsa.util.number_to_string(p.x(), order)
y_str = ecdsa.util.number_to_string(p.y(), order)
if compressed:
return chr(2 + (p.y() & 1)) + x_str
else:
return chr(4) + pubkey.to_string() #x_str + y_str
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)
def b58encode(v):
""" encode v, which is a string of bytes, to base58."""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += (256**i) * ord(c)
result = ''
while long_value >= __b58base:
div, mod = divmod(long_value, __b58base)
result = __b58chars[mod] + result
long_value = div
result = __b58chars[long_value] + result
# Bitcoin does a little leading-zero-compression:
# leading 0-bytes in the input become leading-1s
nPad = 0
for c in v:
if c == '\0': nPad += 1
else: break
return (__b58chars[0]*nPad) + result
def b58decode(v, length):
""" decode v into a string of len bytes."""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += __b58chars.find(c) * (__b58base**i)
result = ''
while long_value >= 256:
div, mod = divmod(long_value, 256)
result = chr(mod) + result
long_value = div
result = chr(long_value) + result
nPad = 0
for c in v:
if c == __b58chars[0]: nPad += 1
else: break
result = chr(0)*nPad + result
if length is not None and len(result) != length:
return None
return result
def EncodeBase58Check(vchIn):
hash = Hash(vchIn)
return b58encode(vchIn + hash[0:4])
def DecodeBase58Check(psz):
vchRet = b58decode(psz, None)
key = vchRet[0:-4]
csum = vchRet[-4:]
hash = Hash(key)
cs32 = hash[0:4]
if cs32 != csum:
return None
else:
return key
def PrivKeyToSecret(privkey):
return privkey[9:9+32]
def SecretToASecret(secret, compressed=False, addrtype=0):
vchIn = chr((addrtype+128)&255) + secret
if compressed: vchIn += '\01'
return EncodeBase58Check(vchIn)
def ASecretToSecret(key, addrtype=0):
vch = DecodeBase58Check(key)
if vch and vch[0] == chr((addrtype+128)&255):
return vch[1:]
else:
return False
def regenerate_key(sec):
b = ASecretToSecret(sec)
if not b:
return False
b = b[0:32]
secret = int('0x' + b.encode('hex'), 16)
return EC_KEY(secret)
def GetPubKey(pubkey, compressed=False):
return i2o_ECPublicKey(pubkey, compressed)
def GetPrivKey(pkey, compressed=False):
return i2d_ECPrivateKey(pkey, compressed)
def GetSecret(pkey):
return ('%064x' % pkey.secret).decode('hex')
def is_compressed(sec):
b = ASecretToSecret(sec)
return len(b) == 33
def public_key_from_private_key(sec):
# rebuild public key from private key, compressed or uncompressed
pkey = regenerate_key(sec)
assert pkey
compressed = is_compressed(sec)
public_key = GetPubKey(pkey.pubkey, compressed)
return public_key.encode('hex')
def address_from_private_key(sec):
public_key = public_key_from_private_key(sec)
address = public_key_to_bc_address(public_key.decode('hex'))
return address
def is_valid(addr):
ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z')
if not ADDRESS_RE.match(addr): return False
try:
addrtype, h = bc_address_to_hash_160(addr)
except:
return False
return addr == hash_160_to_bc_address(h, addrtype)
########### end pywallet functions #######################
# secp256k1, http://www.oid-info.com/get/1.3.132.0.10
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b )
generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
oid_secp256k1 = (1,3,132,0,10)
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 )
from ecdsa.util import string_to_number, number_to_string
def msg_magic(message):
varint = var_int(len(message))
encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)])
return "\x18Bitcoin Signed Message:\n" + encoded_varint + message
class EC_KEY(object):
def __init__( self, secret ):
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
self.secret = secret
def sign_message(self, message, compressed, address):
private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
signature = private_key.sign_digest( Hash( msg_magic(message) ), sigencode = ecdsa.util.sigencode_string )
assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
for i in range(4):
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
try:
self.verify_message( address, sig, message)
return sig
except:
continue
else:
raise BaseException("error: cannot sign message")
@classmethod
def verify_message(self, address, signature, message):
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
from ecdsa import numbertheory, ellipticcurve, util
import msqr
curve = curve_secp256k1
G = generator_secp256k1
order = G.order()
# extract r,s from signature
sig = base64.b64decode(signature)
if len(sig) != 65: raise BaseException("Wrong encoding")
r,s = util.sigdecode_string(sig[1:], order)
nV = ord(sig[0])
if nV < 27 or nV >= 35:
raise BaseException("Bad encoding")
if nV >= 31:
compressed = True
nV -= 4
else:
compressed = False
recid = nV - 27
# 1.1
x = r + (recid/2) * order
# 1.3
alpha = ( x * x * x + curve.a() * x + curve.b() ) % curve.p()
beta = msqr.modular_sqrt(alpha, curve.p())
y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
# 1.4 the constructor checks that nR is at infinity
R = ellipticcurve.Point(curve, x, y, order)
# 1.5 compute e from message:
h = Hash( msg_magic(message) )
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = numbertheory.inverse_mod(r,order)
Q = inv_r * ( s * R + minus_e * G )
public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
# check that Q is the public key
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
# check that we get the original signing address
addr = public_key_to_bc_address( encode_point(public_key, compressed) )
if address != addr:
raise BaseException("Bad signature")
###################################### BIP32 ##############################
random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
BIP32_PRIME = 0x80000000
def bip32_init(seed):
import hmac
seed = seed.decode('hex')
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
master_secret = I[0:32]
master_chain = I[32:]
K, K_compressed = get_pubkeys_from_secret(master_secret)
return master_secret, master_chain, K, K_compressed
def get_pubkeys_from_secret(secret):
# public key
curve = SECP256k1
private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
K = public_key.to_string()
K_compressed = GetPubKey(public_key.pubkey,True)
return K, K_compressed
def CKD(k, c, n):
import hmac
from ecdsa.util import string_to_number, number_to_string
order = generator_secp256k1.order()
keypair = EC_KEY(string_to_number(k))
K = GetPubKey(keypair.pubkey,True)
if n & BIP32_PRIME:
data = chr(0) + k + rev_hex(int_to_hex(n,4)).decode('hex')
I = hmac.new(c, data, hashlib.sha512).digest()
else:
I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order )
c_n = I[32:]
return k_n, c_n
def CKD_prime(K, c, n):
import hmac
from ecdsa.util import string_to_number, number_to_string
order = generator_secp256k1.order()
if n & BIP32_PRIME: raise
K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
K_compressed = GetPubKey(K_public_key.pubkey,True)
I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
curve = SECP256k1
pubkey_point = string_to_number(I[0:32])*curve.generator + K_public_key.pubkey.point
public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
K_n = public_key.to_string()
K_n_compressed = GetPubKey(public_key.pubkey,True)
c_n = I[32:]
return K_n, K_n_compressed, c_n
def bip32_private_derivation(k, c, branch, sequence):
assert sequence.startswith(branch)
sequence = sequence[len(branch):]
for n in sequence.split('/'):
if n == '': continue
n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
k, c = CKD(k, c, n)
K, K_compressed = get_pubkeys_from_secret(k)
return k.encode('hex'), c.encode('hex'), K.encode('hex'), K_compressed.encode('hex')
def bip32_public_derivation(c, K, branch, sequence):
assert sequence.startswith(branch)
sequence = sequence[len(branch):]
for n in sequence.split('/'):
n = int(n)
K, cK, c = CKD_prime(K, c, n)
return c.encode('hex'), K.encode('hex'), cK.encode('hex')
def bip32_private_key(sequence, k, chain):
for i in sequence:
k, chain = CKD(k, chain, i)
return SecretToASecret(k, True)
################################## transactions
MIN_RELAY_TX_FEE = 10000
def test_bip32(seed, sequence):
"""
run a test vector,
see https://en.bitcoin.it/wiki/BIP_0032_TestVectors
"""
master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
print "secret key", master_secret.encode('hex')
print "chain code", master_chain.encode('hex')
key_id = hash_160(master_public_key_compressed)
print "keyid", key_id.encode('hex')
print "base58"
print "address", hash_160_to_bc_address(key_id)
print "secret key", SecretToASecret(master_secret, True)
k = master_secret
c = master_chain
s = ['m']
for n in sequence.split('/'):
s.append(n)
print "Chain [%s]" % '/'.join(s)
n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
k0, c0 = CKD(k, c, n)
K0, K0_compressed = get_pubkeys_from_secret(k0)
print "* Identifier"
print " * (main addr)", hash_160_to_bc_address(hash_160(K0_compressed))
print "* Secret Key"
print " * (hex)", k0.encode('hex')
print " * (wif)", SecretToASecret(k0, True)
print "* Chain Code"
print " * (hex)", c0.encode('hex')
k = k0
c = c0
print "----"
if __name__ == '__main__':
test_bip32("000102030405060708090a0b0c0d0e0f", "0'/1/2'/2/1000000000")
test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","0/2147483647'/1/2147483646'/2")