You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
788 lines
24 KiB
788 lines
24 KiB
# -*- coding: utf-8 -*-
|
|
#!/usr/bin/env python
|
|
#
|
|
# Electrum - lightweight Bitcoin client
|
|
# Copyright (C) 2011 thomasv@gitorious
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import hashlib
|
|
import base64
|
|
import re
|
|
import sys
|
|
import hmac
|
|
|
|
import version
|
|
from util import print_error, InvalidPassword
|
|
|
|
import ecdsa
|
|
import aes
|
|
|
|
################################## transactions
|
|
|
|
DUST_THRESHOLD = 5430
|
|
MIN_RELAY_TX_FEE = 1000
|
|
RECOMMENDED_FEE = 50000
|
|
COINBASE_MATURITY = 100
|
|
|
|
# AES encryption
|
|
EncodeAES = lambda secret, s: base64.b64encode(aes.encryptData(secret,s))
|
|
DecodeAES = lambda secret, e: aes.decryptData(secret, base64.b64decode(e))
|
|
|
|
def strip_PKCS7_padding(s):
|
|
"""return s stripped of PKCS7 padding"""
|
|
if len(s)%16 or not s:
|
|
raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
|
|
numpads = ord(s[-1])
|
|
if numpads > 16:
|
|
raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
|
|
if s[-numpads:] != numpads*chr(numpads):
|
|
raise ValueError("Invalid PKCS7 padding")
|
|
return s[:-numpads]
|
|
|
|
# backport padding fix to AES module
|
|
aes.strip_PKCS7_padding = strip_PKCS7_padding
|
|
|
|
def aes_encrypt_with_iv(key, iv, data):
|
|
mode = aes.AESModeOfOperation.modeOfOperation["CBC"]
|
|
key = map(ord, key)
|
|
iv = map(ord, iv)
|
|
data = aes.append_PKCS7_padding(data)
|
|
keysize = len(key)
|
|
assert keysize in aes.AES.keySize.values(), 'invalid key size: %s' % keysize
|
|
moo = aes.AESModeOfOperation()
|
|
(mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv)
|
|
return ''.join(map(chr, ciph))
|
|
|
|
def aes_decrypt_with_iv(key, iv, data):
|
|
mode = aes.AESModeOfOperation.modeOfOperation["CBC"]
|
|
key = map(ord, key)
|
|
iv = map(ord, iv)
|
|
keysize = len(key)
|
|
assert keysize in aes.AES.keySize.values(), 'invalid key size: %s' % keysize
|
|
data = map(ord, data)
|
|
moo = aes.AESModeOfOperation()
|
|
decr = moo.decrypt(data, None, mode, key, keysize, iv)
|
|
decr = strip_PKCS7_padding(decr)
|
|
return decr
|
|
|
|
|
|
|
|
def pw_encode(s, password):
|
|
if password:
|
|
secret = Hash(password)
|
|
return EncodeAES(secret, s.encode("utf8"))
|
|
else:
|
|
return s
|
|
|
|
|
|
def pw_decode(s, password):
|
|
if password is not None:
|
|
secret = Hash(password)
|
|
try:
|
|
d = DecodeAES(secret, s).decode("utf8")
|
|
except Exception:
|
|
raise InvalidPassword()
|
|
return d
|
|
else:
|
|
return s
|
|
|
|
|
|
def rev_hex(s):
|
|
return s.decode('hex')[::-1].encode('hex')
|
|
|
|
|
|
def int_to_hex(i, length=1):
|
|
s = hex(i)[2:].rstrip('L')
|
|
s = "0"*(2*length - len(s)) + s
|
|
return rev_hex(s)
|
|
|
|
|
|
def var_int(i):
|
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
|
|
if i<0xfd:
|
|
return int_to_hex(i)
|
|
elif i<=0xffff:
|
|
return "fd"+int_to_hex(i,2)
|
|
elif i<=0xffffffff:
|
|
return "fe"+int_to_hex(i,4)
|
|
else:
|
|
return "ff"+int_to_hex(i,8)
|
|
|
|
|
|
def op_push(i):
|
|
if i<0x4c:
|
|
return int_to_hex(i)
|
|
elif i<0xff:
|
|
return '4c' + int_to_hex(i)
|
|
elif i<0xffff:
|
|
return '4d' + int_to_hex(i,2)
|
|
else:
|
|
return '4e' + int_to_hex(i,4)
|
|
|
|
|
|
def sha256(x):
|
|
return hashlib.sha256(x).digest()
|
|
|
|
|
|
def Hash(x):
|
|
if type(x) is unicode: x=x.encode('utf-8')
|
|
return sha256(sha256(x))
|
|
|
|
|
|
hash_encode = lambda x: x[::-1].encode('hex')
|
|
hash_decode = lambda x: x.decode('hex')[::-1]
|
|
hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest()
|
|
|
|
def is_new_seed(x, prefix=version.SEED_PREFIX):
|
|
import mnemonic
|
|
x = mnemonic.prepare_seed(x)
|
|
s = hmac_sha_512("Seed version", x.encode('utf8')).encode('hex')
|
|
return s.startswith(prefix)
|
|
|
|
|
|
def is_old_seed(seed):
|
|
import old_mnemonic
|
|
words = seed.strip().split()
|
|
try:
|
|
old_mnemonic.mn_decode(words)
|
|
uses_electrum_words = True
|
|
except Exception:
|
|
uses_electrum_words = False
|
|
|
|
try:
|
|
seed.decode('hex')
|
|
is_hex = (len(seed) == 32 or len(seed) == 64)
|
|
except Exception:
|
|
is_hex = False
|
|
|
|
return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24))
|
|
|
|
|
|
# pywallet openssl private key implementation
|
|
|
|
def i2d_ECPrivateKey(pkey, compressed=False):
|
|
if compressed:
|
|
key = '3081d30201010420' + \
|
|
'%064x' % pkey.secret + \
|
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
|
|
'%064x' % _p + \
|
|
'3006040100040107042102' + \
|
|
'%064x' % _Gx + \
|
|
'022100' + \
|
|
'%064x' % _r + \
|
|
'020101a124032200'
|
|
else:
|
|
key = '308201130201010420' + \
|
|
'%064x' % pkey.secret + \
|
|
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
|
|
'%064x' % _p + \
|
|
'3006040100040107044104' + \
|
|
'%064x' % _Gx + \
|
|
'%064x' % _Gy + \
|
|
'022100' + \
|
|
'%064x' % _r + \
|
|
'020101a144034200'
|
|
|
|
return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
|
|
|
|
def i2o_ECPublicKey(pubkey, compressed=False):
|
|
# public keys are 65 bytes long (520 bits)
|
|
# 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
|
|
# 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
|
|
# compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
|
|
if compressed:
|
|
if pubkey.point.y() & 1:
|
|
key = '03' + '%064x' % pubkey.point.x()
|
|
else:
|
|
key = '02' + '%064x' % pubkey.point.x()
|
|
else:
|
|
key = '04' + \
|
|
'%064x' % pubkey.point.x() + \
|
|
'%064x' % pubkey.point.y()
|
|
|
|
return key.decode('hex')
|
|
|
|
# end pywallet openssl private key implementation
|
|
|
|
|
|
|
|
############ functions from pywallet #####################
|
|
|
|
def hash_160(public_key):
|
|
try:
|
|
md = hashlib.new('ripemd160')
|
|
md.update(sha256(public_key))
|
|
return md.digest()
|
|
except Exception:
|
|
import ripemd
|
|
md = ripemd.new(sha256(public_key))
|
|
return md.digest()
|
|
|
|
|
|
def public_key_to_bc_address(public_key):
|
|
h160 = hash_160(public_key)
|
|
return hash_160_to_bc_address(h160)
|
|
|
|
def hash_160_to_bc_address(h160, addrtype = 0):
|
|
vh160 = chr(addrtype) + h160
|
|
h = Hash(vh160)
|
|
addr = vh160 + h[0:4]
|
|
return base_encode(addr, base=58)
|
|
|
|
def bc_address_to_hash_160(addr):
|
|
bytes = base_decode(addr, 25, base=58)
|
|
return ord(bytes[0]), bytes[1:21]
|
|
|
|
|
|
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
|
|
assert len(__b58chars) == 58
|
|
|
|
__b43chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:'
|
|
assert len(__b43chars) == 43
|
|
|
|
|
|
def base_encode(v, base):
|
|
""" encode v, which is a string of bytes, to base58."""
|
|
if base == 58:
|
|
chars = __b58chars
|
|
elif base == 43:
|
|
chars = __b43chars
|
|
long_value = 0L
|
|
for (i, c) in enumerate(v[::-1]):
|
|
long_value += (256**i) * ord(c)
|
|
result = ''
|
|
while long_value >= base:
|
|
div, mod = divmod(long_value, base)
|
|
result = chars[mod] + result
|
|
long_value = div
|
|
result = chars[long_value] + result
|
|
# Bitcoin does a little leading-zero-compression:
|
|
# leading 0-bytes in the input become leading-1s
|
|
nPad = 0
|
|
for c in v:
|
|
if c == '\0': nPad += 1
|
|
else: break
|
|
return (chars[0]*nPad) + result
|
|
|
|
|
|
def base_decode(v, length, base):
|
|
""" decode v into a string of len bytes."""
|
|
if base == 58:
|
|
chars = __b58chars
|
|
elif base == 43:
|
|
chars = __b43chars
|
|
long_value = 0L
|
|
for (i, c) in enumerate(v[::-1]):
|
|
long_value += chars.find(c) * (base**i)
|
|
result = ''
|
|
while long_value >= 256:
|
|
div, mod = divmod(long_value, 256)
|
|
result = chr(mod) + result
|
|
long_value = div
|
|
result = chr(long_value) + result
|
|
nPad = 0
|
|
for c in v:
|
|
if c == chars[0]: nPad += 1
|
|
else: break
|
|
result = chr(0)*nPad + result
|
|
if length is not None and len(result) != length:
|
|
return None
|
|
return result
|
|
|
|
|
|
def EncodeBase58Check(vchIn):
|
|
hash = Hash(vchIn)
|
|
return base_encode(vchIn + hash[0:4], base=58)
|
|
|
|
|
|
def DecodeBase58Check(psz):
|
|
vchRet = base_decode(psz, None, base=58)
|
|
key = vchRet[0:-4]
|
|
csum = vchRet[-4:]
|
|
hash = Hash(key)
|
|
cs32 = hash[0:4]
|
|
if cs32 != csum:
|
|
return None
|
|
else:
|
|
return key
|
|
|
|
|
|
def PrivKeyToSecret(privkey):
|
|
return privkey[9:9+32]
|
|
|
|
|
|
def SecretToASecret(secret, compressed=False, addrtype=0):
|
|
vchIn = chr((addrtype+128)&255) + secret
|
|
if compressed: vchIn += '\01'
|
|
return EncodeBase58Check(vchIn)
|
|
|
|
def ASecretToSecret(key, addrtype=0):
|
|
vch = DecodeBase58Check(key)
|
|
if vch and vch[0] == chr((addrtype+128)&255):
|
|
return vch[1:]
|
|
else:
|
|
return False
|
|
|
|
def regenerate_key(sec):
|
|
b = ASecretToSecret(sec)
|
|
if not b:
|
|
return False
|
|
b = b[0:32]
|
|
return EC_KEY(b)
|
|
|
|
|
|
def GetPubKey(pubkey, compressed=False):
|
|
return i2o_ECPublicKey(pubkey, compressed)
|
|
|
|
|
|
def GetPrivKey(pkey, compressed=False):
|
|
return i2d_ECPrivateKey(pkey, compressed)
|
|
|
|
|
|
def GetSecret(pkey):
|
|
return ('%064x' % pkey.secret).decode('hex')
|
|
|
|
|
|
def is_compressed(sec):
|
|
b = ASecretToSecret(sec)
|
|
return len(b) == 33
|
|
|
|
|
|
def public_key_from_private_key(sec):
|
|
# rebuild public key from private key, compressed or uncompressed
|
|
pkey = regenerate_key(sec)
|
|
assert pkey
|
|
compressed = is_compressed(sec)
|
|
public_key = GetPubKey(pkey.pubkey, compressed)
|
|
return public_key.encode('hex')
|
|
|
|
|
|
def address_from_private_key(sec):
|
|
public_key = public_key_from_private_key(sec)
|
|
address = public_key_to_bc_address(public_key.decode('hex'))
|
|
return address
|
|
|
|
|
|
def is_valid(addr):
|
|
return is_address(addr)
|
|
|
|
|
|
def is_address(addr):
|
|
ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z')
|
|
if not ADDRESS_RE.match(addr): return False
|
|
try:
|
|
addrtype, h = bc_address_to_hash_160(addr)
|
|
except Exception:
|
|
return False
|
|
return addr == hash_160_to_bc_address(h, addrtype)
|
|
|
|
|
|
def is_private_key(key):
|
|
try:
|
|
k = ASecretToSecret(key)
|
|
return k is not False
|
|
except:
|
|
return False
|
|
|
|
|
|
########### end pywallet functions #######################
|
|
|
|
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1
|
|
from ecdsa.curves import SECP256k1
|
|
from ecdsa.ellipticcurve import Point
|
|
from ecdsa.util import string_to_number, number_to_string
|
|
|
|
def msg_magic(message):
|
|
varint = var_int(len(message))
|
|
encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)])
|
|
return "\x18Bitcoin Signed Message:\n" + encoded_varint + message
|
|
|
|
|
|
def verify_message(address, signature, message):
|
|
try:
|
|
EC_KEY.verify_message(address, signature, message)
|
|
return True
|
|
except Exception as e:
|
|
print_error("Verification error: {0}".format(e))
|
|
return False
|
|
|
|
|
|
def encrypt_message(message, pubkey):
|
|
return EC_KEY.encrypt_message(message, pubkey.decode('hex'))
|
|
|
|
|
|
def chunks(l, n):
|
|
return [l[i:i+n] for i in xrange(0, len(l), n)]
|
|
|
|
|
|
def ECC_YfromX(x,curved=curve_secp256k1, odd=True):
|
|
_p = curved.p()
|
|
_a = curved.a()
|
|
_b = curved.b()
|
|
for offset in range(128):
|
|
Mx = x + offset
|
|
My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p
|
|
My = pow(My2, (_p+1)/4, _p )
|
|
|
|
if curved.contains_point(Mx,My):
|
|
if odd == bool(My&1):
|
|
return [My,offset]
|
|
return [_p-My,offset]
|
|
raise Exception('ECC_YfromX: No Y found')
|
|
|
|
|
|
def negative_point(P):
|
|
return Point( P.curve(), P.x(), -P.y(), P.order() )
|
|
|
|
|
|
def point_to_ser(P, comp=True ):
|
|
if comp:
|
|
return ( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ).decode('hex')
|
|
return ( '04'+('%064x'%P.x())+('%064x'%P.y()) ).decode('hex')
|
|
|
|
|
|
def ser_to_point(Aser):
|
|
curve = curve_secp256k1
|
|
generator = generator_secp256k1
|
|
_r = generator.order()
|
|
assert Aser[0] in ['\x02','\x03','\x04']
|
|
if Aser[0] == '\x04':
|
|
return Point( curve, string_to_number(Aser[1:33]), string_to_number(Aser[33:]), _r )
|
|
Mx = string_to_number(Aser[1:])
|
|
return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0]=='\x03')[0], _r )
|
|
|
|
|
|
|
|
class MyVerifyingKey(ecdsa.VerifyingKey):
|
|
@classmethod
|
|
def from_signature(klass, sig, recid, h, curve):
|
|
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
|
|
from ecdsa import util, numbertheory
|
|
import msqr
|
|
curveFp = curve.curve
|
|
G = curve.generator
|
|
order = G.order()
|
|
# extract r,s from signature
|
|
r, s = util.sigdecode_string(sig, order)
|
|
# 1.1
|
|
x = r + (recid/2) * order
|
|
# 1.3
|
|
alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p()
|
|
beta = msqr.modular_sqrt(alpha, curveFp.p())
|
|
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
|
|
# 1.4 the constructor checks that nR is at infinity
|
|
R = Point(curveFp, x, y, order)
|
|
# 1.5 compute e from message:
|
|
e = string_to_number(h)
|
|
minus_e = -e % order
|
|
# 1.6 compute Q = r^-1 (sR - eG)
|
|
inv_r = numbertheory.inverse_mod(r,order)
|
|
Q = inv_r * ( s * R + minus_e * G )
|
|
return klass.from_public_point( Q, curve )
|
|
|
|
|
|
class EC_KEY(object):
|
|
def __init__( self, k ):
|
|
secret = string_to_number(k)
|
|
self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
|
|
self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
|
|
self.secret = secret
|
|
|
|
def get_public_key(self, compressed=True):
|
|
return point_to_ser(self.pubkey.point, compressed).encode('hex')
|
|
|
|
def sign_message(self, message, compressed, address):
|
|
private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
|
|
public_key = private_key.get_verifying_key()
|
|
signature = private_key.sign_digest_deterministic( Hash( msg_magic(message) ), hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string )
|
|
assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
|
|
for i in range(4):
|
|
sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
|
|
try:
|
|
self.verify_message( address, sig, message)
|
|
return sig
|
|
except Exception:
|
|
continue
|
|
else:
|
|
raise Exception("error: cannot sign message")
|
|
|
|
|
|
@classmethod
|
|
def verify_message(self, address, signature, message):
|
|
sig = base64.b64decode(signature)
|
|
if len(sig) != 65: raise Exception("Wrong encoding")
|
|
|
|
nV = ord(sig[0])
|
|
if nV < 27 or nV >= 35:
|
|
raise Exception("Bad encoding")
|
|
if nV >= 31:
|
|
compressed = True
|
|
nV -= 4
|
|
else:
|
|
compressed = False
|
|
|
|
recid = nV - 27
|
|
h = Hash( msg_magic(message) )
|
|
public_key = MyVerifyingKey.from_signature( sig[1:], recid, h, curve = SECP256k1 )
|
|
|
|
# check public key
|
|
public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
|
|
|
|
# check that we get the original signing address
|
|
addr = public_key_to_bc_address( point_to_ser(public_key.pubkey.point, compressed) )
|
|
if address != addr:
|
|
raise Exception("Bad signature")
|
|
|
|
|
|
# ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac
|
|
|
|
@classmethod
|
|
def encrypt_message(self, message, pubkey):
|
|
|
|
pk = ser_to_point(pubkey)
|
|
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()):
|
|
raise Exception('invalid pubkey')
|
|
|
|
ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2,256)), generator_secp256k1.order())
|
|
ephemeral = EC_KEY(ephemeral_exponent)
|
|
ecdh_key = point_to_ser(pk * ephemeral.privkey.secret_multiplier)
|
|
key = hashlib.sha512(ecdh_key).digest()
|
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
|
|
ciphertext = aes_encrypt_with_iv(key_e, iv, message)
|
|
ephemeral_pubkey = ephemeral.get_public_key(compressed=True).decode('hex')
|
|
encrypted = 'BIE1' + ephemeral_pubkey + ciphertext
|
|
mac = hmac.new(key_m, encrypted, hashlib.sha256).digest()
|
|
|
|
return base64.b64encode(encrypted + mac)
|
|
|
|
|
|
def decrypt_message(self, encrypted):
|
|
|
|
encrypted = base64.b64decode(encrypted)
|
|
|
|
if len(encrypted) < 85:
|
|
raise Exception('invalid ciphertext: length')
|
|
|
|
magic = encrypted[:4]
|
|
ephemeral_pubkey = encrypted[4:37]
|
|
ciphertext = encrypted[37:-32]
|
|
mac = encrypted[-32:]
|
|
|
|
if magic != 'BIE1':
|
|
raise Exception('invalid ciphertext: invalid magic bytes')
|
|
|
|
try:
|
|
ephemeral_pubkey = ser_to_point(ephemeral_pubkey)
|
|
except AssertionError, e:
|
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
|
|
|
|
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ephemeral_pubkey.x(), ephemeral_pubkey.y()):
|
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
|
|
|
|
ecdh_key = point_to_ser(ephemeral_pubkey * self.privkey.secret_multiplier)
|
|
key = hashlib.sha512(ecdh_key).digest()
|
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
|
|
if mac != hmac.new(key_m, encrypted[:-32], hashlib.sha256).digest():
|
|
raise Exception('invalid ciphertext: invalid mac')
|
|
|
|
return aes_decrypt_with_iv(key_e, iv, ciphertext)
|
|
|
|
|
|
###################################### BIP32 ##############################
|
|
|
|
random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
|
|
BIP32_PRIME = 0x80000000
|
|
|
|
|
|
def get_pubkeys_from_secret(secret):
|
|
# public key
|
|
private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 )
|
|
public_key = private_key.get_verifying_key()
|
|
K = public_key.to_string()
|
|
K_compressed = GetPubKey(public_key.pubkey,True)
|
|
return K, K_compressed
|
|
|
|
|
|
# Child private key derivation function (from master private key)
|
|
# k = master private key (32 bytes)
|
|
# c = master chain code (extra entropy for key derivation) (32 bytes)
|
|
# n = the index of the key we want to derive. (only 32 bits will be used)
|
|
# If n is negative (i.e. the 32nd bit is set), the resulting private key's
|
|
# corresponding public key can NOT be determined without the master private key.
|
|
# However, if n is positive, the resulting private key's corresponding
|
|
# public key can be determined without the master private key.
|
|
def CKD_priv(k, c, n):
|
|
is_prime = n & BIP32_PRIME
|
|
return _CKD_priv(k, c, rev_hex(int_to_hex(n,4)).decode('hex'), is_prime)
|
|
|
|
def _CKD_priv(k, c, s, is_prime):
|
|
import hmac
|
|
from ecdsa.util import string_to_number, number_to_string
|
|
order = generator_secp256k1.order()
|
|
keypair = EC_KEY(k)
|
|
cK = GetPubKey(keypair.pubkey,True)
|
|
data = chr(0) + k + s if is_prime else cK + s
|
|
I = hmac.new(c, data, hashlib.sha512).digest()
|
|
k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order )
|
|
c_n = I[32:]
|
|
return k_n, c_n
|
|
|
|
# Child public key derivation function (from public key only)
|
|
# K = master public key
|
|
# c = master chain code
|
|
# n = index of key we want to derive
|
|
# This function allows us to find the nth public key, as long as n is
|
|
# non-negative. If n is negative, we need the master private key to find it.
|
|
def CKD_pub(cK, c, n):
|
|
if n & BIP32_PRIME: raise
|
|
return _CKD_pub(cK, c, rev_hex(int_to_hex(n,4)).decode('hex'))
|
|
|
|
# helper function, callable with arbitrary string
|
|
def _CKD_pub(cK, c, s):
|
|
import hmac
|
|
from ecdsa.util import string_to_number, number_to_string
|
|
order = generator_secp256k1.order()
|
|
I = hmac.new(c, cK + s, hashlib.sha512).digest()
|
|
curve = SECP256k1
|
|
pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK)
|
|
public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
|
|
c_n = I[32:]
|
|
cK_n = GetPubKey(public_key.pubkey,True)
|
|
return cK_n, c_n
|
|
|
|
|
|
BITCOIN_HEADER_PRIV = "0488ade4"
|
|
BITCOIN_HEADER_PUB = "0488b21e"
|
|
|
|
TESTNET_HEADER_PRIV = "04358394"
|
|
TESTNET_HEADER_PUB = "043587cf"
|
|
|
|
BITCOIN_HEADERS = (BITCOIN_HEADER_PUB, BITCOIN_HEADER_PRIV)
|
|
TESTNET_HEADERS = (TESTNET_HEADER_PUB, TESTNET_HEADER_PRIV)
|
|
|
|
def _get_headers(testnet):
|
|
"""Returns the correct headers for either testnet or bitcoin, in the form
|
|
of a 2-tuple, like (public, private)."""
|
|
if testnet:
|
|
return TESTNET_HEADERS
|
|
else:
|
|
return BITCOIN_HEADERS
|
|
|
|
|
|
def deserialize_xkey(xkey):
|
|
|
|
xkey = DecodeBase58Check(xkey)
|
|
assert len(xkey) == 78
|
|
|
|
xkey_header = xkey[0:4].encode('hex')
|
|
# Determine if the key is a bitcoin key or a testnet key.
|
|
if xkey_header in TESTNET_HEADERS:
|
|
head = TESTNET_HEADER_PRIV
|
|
elif xkey_header in BITCOIN_HEADERS:
|
|
head = BITCOIN_HEADER_PRIV
|
|
else:
|
|
raise Exception("Unknown xkey header: '%s'" % xkey_header)
|
|
|
|
depth = ord(xkey[4])
|
|
fingerprint = xkey[5:9]
|
|
child_number = xkey[9:13]
|
|
c = xkey[13:13+32]
|
|
if xkey[0:4].encode('hex') == head:
|
|
K_or_k = xkey[13+33:]
|
|
else:
|
|
K_or_k = xkey[13+32:]
|
|
return depth, fingerprint, child_number, c, K_or_k
|
|
|
|
|
|
def get_xkey_name(xkey, testnet=False):
|
|
depth, fingerprint, child_number, c, K = deserialize_xkey(xkey)
|
|
n = int(child_number.encode('hex'), 16)
|
|
if n & BIP32_PRIME:
|
|
child_id = "%d'"%(n - BIP32_PRIME)
|
|
else:
|
|
child_id = "%d"%n
|
|
if depth == 0:
|
|
return ''
|
|
elif depth == 1:
|
|
return child_id
|
|
else:
|
|
raise BaseException("xpub depth error")
|
|
|
|
|
|
def xpub_from_xprv(xprv, testnet=False):
|
|
depth, fingerprint, child_number, c, k = deserialize_xkey(xprv)
|
|
K, cK = get_pubkeys_from_secret(k)
|
|
header_pub, _ = _get_headers(testnet)
|
|
xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
|
|
return EncodeBase58Check(xpub)
|
|
|
|
|
|
def bip32_root(seed, testnet=False):
|
|
import hmac
|
|
header_pub, header_priv = _get_headers(testnet)
|
|
I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
|
|
master_k = I[0:32]
|
|
master_c = I[32:]
|
|
K, cK = get_pubkeys_from_secret(master_k)
|
|
xprv = (header_priv + "00" + "00000000" + "00000000").decode("hex") + master_c + chr(0) + master_k
|
|
xpub = (header_pub + "00" + "00000000" + "00000000").decode("hex") + master_c + cK
|
|
return EncodeBase58Check(xprv), EncodeBase58Check(xpub)
|
|
|
|
|
|
def bip32_private_derivation(xprv, branch, sequence, testnet=False):
|
|
assert sequence.startswith(branch)
|
|
if branch == sequence:
|
|
return xprv, xpub_from_xprv(xprv, testnet)
|
|
header_pub, header_priv = _get_headers(testnet)
|
|
depth, fingerprint, child_number, c, k = deserialize_xkey(xprv)
|
|
sequence = sequence[len(branch):]
|
|
for n in sequence.split('/'):
|
|
if n == '': continue
|
|
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
|
|
parent_k = k
|
|
k, c = CKD_priv(k, c, i)
|
|
depth += 1
|
|
|
|
_, parent_cK = get_pubkeys_from_secret(parent_k)
|
|
fingerprint = hash_160(parent_cK)[0:4]
|
|
child_number = ("%08X"%i).decode('hex')
|
|
K, cK = get_pubkeys_from_secret(k)
|
|
xprv = header_priv.decode('hex') + chr(depth) + fingerprint + child_number + c + chr(0) + k
|
|
xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
|
|
return EncodeBase58Check(xprv), EncodeBase58Check(xpub)
|
|
|
|
|
|
def bip32_public_derivation(xpub, branch, sequence, testnet=False):
|
|
header_pub, _ = _get_headers(testnet)
|
|
depth, fingerprint, child_number, c, cK = deserialize_xkey(xpub)
|
|
assert sequence.startswith(branch)
|
|
sequence = sequence[len(branch):]
|
|
for n in sequence.split('/'):
|
|
if n == '': continue
|
|
i = int(n)
|
|
parent_cK = cK
|
|
cK, c = CKD_pub(cK, c, i)
|
|
depth += 1
|
|
|
|
fingerprint = hash_160(parent_cK)[0:4]
|
|
child_number = ("%08X"%i).decode('hex')
|
|
xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
|
|
return EncodeBase58Check(xpub)
|
|
|
|
|
|
def bip32_private_key(sequence, k, chain):
|
|
for i in sequence:
|
|
k, chain = CKD_priv(k, chain, i)
|
|
return SecretToASecret(k, True)
|
|
|