You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
761 lines
24 KiB
761 lines
24 KiB
# -*- coding: utf-8 -*-
|
|
#
|
|
# Electrum - lightweight Bitcoin client
|
|
# Copyright (C) 2011 thomasv@gitorious
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person
|
|
# obtaining a copy of this software and associated documentation files
|
|
# (the "Software"), to deal in the Software without restriction,
|
|
# including without limitation the rights to use, copy, modify, merge,
|
|
# publish, distribute, sublicense, and/or sell copies of the Software,
|
|
# and to permit persons to whom the Software is furnished to do so,
|
|
# subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be
|
|
# included in all copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import hashlib
|
|
import hmac
|
|
|
|
from .util import bfh, bh2u, BitcoinException, print_error, assert_bytes, to_bytes, inv_dict
|
|
from . import version
|
|
from . import segwit_addr
|
|
from . import constants
|
|
from . import ecc
|
|
from .crypto import Hash, sha256, hash_160, hmac_oneshot
|
|
|
|
|
|
################################## transactions
|
|
|
|
COINBASE_MATURITY = 100
|
|
COIN = 100000000
|
|
TOTAL_COIN_SUPPLY_LIMIT_IN_BTC = 21000000
|
|
|
|
# supported types of transaction outputs
|
|
TYPE_ADDRESS = 0
|
|
TYPE_PUBKEY = 1
|
|
TYPE_SCRIPT = 2
|
|
|
|
|
|
def rev_hex(s):
|
|
return bh2u(bfh(s)[::-1])
|
|
|
|
|
|
def int_to_hex(i: int, length: int=1) -> str:
|
|
"""Converts int to little-endian hex string.
|
|
`length` is the number of bytes available
|
|
"""
|
|
if not isinstance(i, int):
|
|
raise TypeError('{} instead of int'.format(i))
|
|
range_size = pow(256, length)
|
|
if i < -range_size/2 or i >= range_size:
|
|
raise OverflowError('cannot convert int {} to hex ({} bytes)'.format(i, length))
|
|
if i < 0:
|
|
# two's complement
|
|
i = range_size + i
|
|
s = hex(i)[2:].rstrip('L')
|
|
s = "0"*(2*length - len(s)) + s
|
|
return rev_hex(s)
|
|
|
|
def script_num_to_hex(i: int) -> str:
|
|
"""See CScriptNum in Bitcoin Core.
|
|
Encodes an integer as hex, to be used in script.
|
|
|
|
ported from https://github.com/bitcoin/bitcoin/blob/8cbc5c4be4be22aca228074f087a374a7ec38be8/src/script/script.h#L326
|
|
"""
|
|
if i == 0:
|
|
return ''
|
|
|
|
result = bytearray()
|
|
neg = i < 0
|
|
absvalue = abs(i)
|
|
while absvalue > 0:
|
|
result.append(absvalue & 0xff)
|
|
absvalue >>= 8
|
|
|
|
if result[-1] & 0x80:
|
|
result.append(0x80 if neg else 0x00)
|
|
elif neg:
|
|
result[-1] |= 0x80
|
|
|
|
return bh2u(result)
|
|
|
|
|
|
def var_int(i: int) -> str:
|
|
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
|
|
if i<0xfd:
|
|
return int_to_hex(i)
|
|
elif i<=0xffff:
|
|
return "fd"+int_to_hex(i,2)
|
|
elif i<=0xffffffff:
|
|
return "fe"+int_to_hex(i,4)
|
|
else:
|
|
return "ff"+int_to_hex(i,8)
|
|
|
|
|
|
def witness_push(item: str) -> str:
|
|
"""Returns data in the form it should be present in the witness.
|
|
hex -> hex
|
|
"""
|
|
return var_int(len(item) // 2) + item
|
|
|
|
|
|
def op_push(i: int) -> str:
|
|
if i<0x4c: # OP_PUSHDATA1
|
|
return int_to_hex(i)
|
|
elif i<=0xff:
|
|
return '4c' + int_to_hex(i)
|
|
elif i<=0xffff:
|
|
return '4d' + int_to_hex(i,2)
|
|
else:
|
|
return '4e' + int_to_hex(i,4)
|
|
|
|
|
|
def push_script(data: str) -> str:
|
|
"""Returns pushed data to the script, automatically
|
|
choosing canonical opcodes depending on the length of the data.
|
|
hex -> hex
|
|
|
|
ported from https://github.com/btcsuite/btcd/blob/fdc2bc867bda6b351191b5872d2da8270df00d13/txscript/scriptbuilder.go#L128
|
|
"""
|
|
data = bfh(data)
|
|
from .transaction import opcodes
|
|
|
|
data_len = len(data)
|
|
|
|
# "small integer" opcodes
|
|
if data_len == 0 or data_len == 1 and data[0] == 0:
|
|
return bh2u(bytes([opcodes.OP_0]))
|
|
elif data_len == 1 and data[0] <= 16:
|
|
return bh2u(bytes([opcodes.OP_1 - 1 + data[0]]))
|
|
elif data_len == 1 and data[0] == 0x81:
|
|
return bh2u(bytes([opcodes.OP_1NEGATE]))
|
|
|
|
return op_push(data_len) + bh2u(data)
|
|
|
|
|
|
def add_number_to_script(i: int) -> bytes:
|
|
return bfh(push_script(script_num_to_hex(i)))
|
|
|
|
|
|
hash_encode = lambda x: bh2u(x[::-1])
|
|
hash_decode = lambda x: bfh(x)[::-1]
|
|
hmac_sha_512 = lambda x, y: hmac_oneshot(x, y, hashlib.sha512)
|
|
|
|
|
|
def is_new_seed(x, prefix=version.SEED_PREFIX):
|
|
from . import mnemonic
|
|
x = mnemonic.normalize_text(x)
|
|
s = bh2u(hmac_sha_512(b"Seed version", x.encode('utf8')))
|
|
return s.startswith(prefix)
|
|
|
|
|
|
def is_old_seed(seed):
|
|
from . import old_mnemonic, mnemonic
|
|
seed = mnemonic.normalize_text(seed)
|
|
words = seed.split()
|
|
try:
|
|
# checks here are deliberately left weak for legacy reasons, see #3149
|
|
old_mnemonic.mn_decode(words)
|
|
uses_electrum_words = True
|
|
except Exception:
|
|
uses_electrum_words = False
|
|
try:
|
|
seed = bfh(seed)
|
|
is_hex = (len(seed) == 16 or len(seed) == 32)
|
|
except Exception:
|
|
is_hex = False
|
|
return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24))
|
|
|
|
|
|
def seed_type(x):
|
|
if is_old_seed(x):
|
|
return 'old'
|
|
elif is_new_seed(x):
|
|
return 'standard'
|
|
elif is_new_seed(x, version.SEED_PREFIX_SW):
|
|
return 'segwit'
|
|
elif is_new_seed(x, version.SEED_PREFIX_2FA):
|
|
return '2fa'
|
|
return ''
|
|
|
|
is_seed = lambda x: bool(seed_type(x))
|
|
|
|
|
|
############ functions from pywallet #####################
|
|
|
|
def hash160_to_b58_address(h160: bytes, addrtype):
|
|
s = bytes([addrtype])
|
|
s += h160
|
|
return base_encode(s+Hash(s)[0:4], base=58)
|
|
|
|
|
|
def b58_address_to_hash160(addr):
|
|
addr = to_bytes(addr, 'ascii')
|
|
_bytes = base_decode(addr, 25, base=58)
|
|
return _bytes[0], _bytes[1:21]
|
|
|
|
|
|
def hash160_to_p2pkh(h160, *, net=None):
|
|
if net is None:
|
|
net = constants.net
|
|
return hash160_to_b58_address(h160, net.ADDRTYPE_P2PKH)
|
|
|
|
def hash160_to_p2sh(h160, *, net=None):
|
|
if net is None:
|
|
net = constants.net
|
|
return hash160_to_b58_address(h160, net.ADDRTYPE_P2SH)
|
|
|
|
def public_key_to_p2pkh(public_key: bytes) -> str:
|
|
return hash160_to_p2pkh(hash_160(public_key))
|
|
|
|
def hash_to_segwit_addr(h, witver, *, net=None):
|
|
if net is None:
|
|
net = constants.net
|
|
return segwit_addr.encode(net.SEGWIT_HRP, witver, h)
|
|
|
|
def public_key_to_p2wpkh(public_key):
|
|
return hash_to_segwit_addr(hash_160(public_key), witver=0)
|
|
|
|
def script_to_p2wsh(script):
|
|
return hash_to_segwit_addr(sha256(bfh(script)), witver=0)
|
|
|
|
def p2wpkh_nested_script(pubkey):
|
|
pkh = bh2u(hash_160(bfh(pubkey)))
|
|
return '00' + push_script(pkh)
|
|
|
|
def p2wsh_nested_script(witness_script):
|
|
wsh = bh2u(sha256(bfh(witness_script)))
|
|
return '00' + push_script(wsh)
|
|
|
|
def pubkey_to_address(txin_type, pubkey):
|
|
if txin_type == 'p2pkh':
|
|
return public_key_to_p2pkh(bfh(pubkey))
|
|
elif txin_type == 'p2wpkh':
|
|
return public_key_to_p2wpkh(bfh(pubkey))
|
|
elif txin_type == 'p2wpkh-p2sh':
|
|
scriptSig = p2wpkh_nested_script(pubkey)
|
|
return hash160_to_p2sh(hash_160(bfh(scriptSig)))
|
|
else:
|
|
raise NotImplementedError(txin_type)
|
|
|
|
def redeem_script_to_address(txin_type, redeem_script):
|
|
if txin_type == 'p2sh':
|
|
return hash160_to_p2sh(hash_160(bfh(redeem_script)))
|
|
elif txin_type == 'p2wsh':
|
|
return script_to_p2wsh(redeem_script)
|
|
elif txin_type == 'p2wsh-p2sh':
|
|
scriptSig = p2wsh_nested_script(redeem_script)
|
|
return hash160_to_p2sh(hash_160(bfh(scriptSig)))
|
|
else:
|
|
raise NotImplementedError(txin_type)
|
|
|
|
|
|
def script_to_address(script, *, net=None):
|
|
from .transaction import get_address_from_output_script
|
|
t, addr = get_address_from_output_script(bfh(script), net=net)
|
|
assert t == TYPE_ADDRESS
|
|
return addr
|
|
|
|
def address_to_script(addr, *, net=None):
|
|
if net is None:
|
|
net = constants.net
|
|
witver, witprog = segwit_addr.decode(net.SEGWIT_HRP, addr)
|
|
if witprog is not None:
|
|
if not (0 <= witver <= 16):
|
|
raise BitcoinException('impossible witness version: {}'.format(witver))
|
|
OP_n = witver + 0x50 if witver > 0 else 0
|
|
script = bh2u(bytes([OP_n]))
|
|
script += push_script(bh2u(bytes(witprog)))
|
|
return script
|
|
addrtype, hash_160 = b58_address_to_hash160(addr)
|
|
if addrtype == net.ADDRTYPE_P2PKH:
|
|
script = '76a9' # op_dup, op_hash_160
|
|
script += push_script(bh2u(hash_160))
|
|
script += '88ac' # op_equalverify, op_checksig
|
|
elif addrtype == net.ADDRTYPE_P2SH:
|
|
script = 'a9' # op_hash_160
|
|
script += push_script(bh2u(hash_160))
|
|
script += '87' # op_equal
|
|
else:
|
|
raise BitcoinException('unknown address type: {}'.format(addrtype))
|
|
return script
|
|
|
|
def address_to_scripthash(addr):
|
|
script = address_to_script(addr)
|
|
return script_to_scripthash(script)
|
|
|
|
def script_to_scripthash(script):
|
|
h = sha256(bytes.fromhex(script))[0:32]
|
|
return bh2u(bytes(reversed(h)))
|
|
|
|
def public_key_to_p2pk_script(pubkey):
|
|
script = push_script(pubkey)
|
|
script += 'ac' # op_checksig
|
|
return script
|
|
|
|
__b58chars = b'123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
|
|
assert len(__b58chars) == 58
|
|
|
|
__b43chars = b'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:'
|
|
assert len(__b43chars) == 43
|
|
|
|
|
|
def base_encode(v: bytes, base: int) -> str:
|
|
""" encode v, which is a string of bytes, to base58."""
|
|
assert_bytes(v)
|
|
if base not in (58, 43):
|
|
raise ValueError('not supported base: {}'.format(base))
|
|
chars = __b58chars
|
|
if base == 43:
|
|
chars = __b43chars
|
|
long_value = 0
|
|
for (i, c) in enumerate(v[::-1]):
|
|
long_value += (256**i) * c
|
|
result = bytearray()
|
|
while long_value >= base:
|
|
div, mod = divmod(long_value, base)
|
|
result.append(chars[mod])
|
|
long_value = div
|
|
result.append(chars[long_value])
|
|
# Bitcoin does a little leading-zero-compression:
|
|
# leading 0-bytes in the input become leading-1s
|
|
nPad = 0
|
|
for c in v:
|
|
if c == 0x00:
|
|
nPad += 1
|
|
else:
|
|
break
|
|
result.extend([chars[0]] * nPad)
|
|
result.reverse()
|
|
return result.decode('ascii')
|
|
|
|
|
|
def base_decode(v, length, base):
|
|
""" decode v into a string of len bytes."""
|
|
# assert_bytes(v)
|
|
v = to_bytes(v, 'ascii')
|
|
if base not in (58, 43):
|
|
raise ValueError('not supported base: {}'.format(base))
|
|
chars = __b58chars
|
|
if base == 43:
|
|
chars = __b43chars
|
|
long_value = 0
|
|
for (i, c) in enumerate(v[::-1]):
|
|
digit = chars.find(bytes([c]))
|
|
if digit == -1:
|
|
raise ValueError('Forbidden character {} for base {}'.format(c, base))
|
|
long_value += digit * (base**i)
|
|
result = bytearray()
|
|
while long_value >= 256:
|
|
div, mod = divmod(long_value, 256)
|
|
result.append(mod)
|
|
long_value = div
|
|
result.append(long_value)
|
|
nPad = 0
|
|
for c in v:
|
|
if c == chars[0]:
|
|
nPad += 1
|
|
else:
|
|
break
|
|
result.extend(b'\x00' * nPad)
|
|
if length is not None and len(result) != length:
|
|
return None
|
|
result.reverse()
|
|
return bytes(result)
|
|
|
|
|
|
class InvalidChecksum(Exception):
|
|
pass
|
|
|
|
|
|
def EncodeBase58Check(vchIn):
|
|
hash = Hash(vchIn)
|
|
return base_encode(vchIn + hash[0:4], base=58)
|
|
|
|
|
|
def DecodeBase58Check(psz):
|
|
vchRet = base_decode(psz, None, base=58)
|
|
key = vchRet[0:-4]
|
|
csum = vchRet[-4:]
|
|
hash = Hash(key)
|
|
cs32 = hash[0:4]
|
|
if cs32 != csum:
|
|
raise InvalidChecksum('expected {}, actual {}'.format(bh2u(cs32), bh2u(csum)))
|
|
else:
|
|
return key
|
|
|
|
|
|
# backwards compat
|
|
# extended WIF for segwit (used in 3.0.x; but still used internally)
|
|
# the keys in this dict should be a superset of what Imported Wallets can import
|
|
WIF_SCRIPT_TYPES = {
|
|
'p2pkh':0,
|
|
'p2wpkh':1,
|
|
'p2wpkh-p2sh':2,
|
|
'p2sh':5,
|
|
'p2wsh':6,
|
|
'p2wsh-p2sh':7
|
|
}
|
|
WIF_SCRIPT_TYPES_INV = inv_dict(WIF_SCRIPT_TYPES)
|
|
|
|
|
|
PURPOSE48_SCRIPT_TYPES = {
|
|
'p2wsh-p2sh': 1, # specifically multisig
|
|
'p2wsh': 2, # specifically multisig
|
|
}
|
|
PURPOSE48_SCRIPT_TYPES_INV = inv_dict(PURPOSE48_SCRIPT_TYPES)
|
|
|
|
|
|
def serialize_privkey(secret: bytes, compressed: bool, txin_type: str,
|
|
internal_use: bool=False) -> str:
|
|
# we only export secrets inside curve range
|
|
secret = ecc.ECPrivkey.normalize_secret_bytes(secret)
|
|
if internal_use:
|
|
prefix = bytes([(WIF_SCRIPT_TYPES[txin_type] + constants.net.WIF_PREFIX) & 255])
|
|
else:
|
|
prefix = bytes([constants.net.WIF_PREFIX])
|
|
suffix = b'\01' if compressed else b''
|
|
vchIn = prefix + secret + suffix
|
|
base58_wif = EncodeBase58Check(vchIn)
|
|
if internal_use:
|
|
return base58_wif
|
|
else:
|
|
return '{}:{}'.format(txin_type, base58_wif)
|
|
|
|
|
|
def deserialize_privkey(key: str) -> (str, bytes, bool):
|
|
if is_minikey(key):
|
|
return 'p2pkh', minikey_to_private_key(key), False
|
|
|
|
txin_type = None
|
|
if ':' in key:
|
|
txin_type, key = key.split(sep=':', maxsplit=1)
|
|
if txin_type not in WIF_SCRIPT_TYPES:
|
|
raise BitcoinException('unknown script type: {}'.format(txin_type))
|
|
try:
|
|
vch = DecodeBase58Check(key)
|
|
except BaseException:
|
|
neutered_privkey = str(key)[:3] + '..' + str(key)[-2:]
|
|
raise BitcoinException("cannot deserialize privkey {}"
|
|
.format(neutered_privkey))
|
|
|
|
if txin_type is None:
|
|
# keys exported in version 3.0.x encoded script type in first byte
|
|
prefix_value = vch[0] - constants.net.WIF_PREFIX
|
|
try:
|
|
txin_type = WIF_SCRIPT_TYPES_INV[prefix_value]
|
|
except KeyError:
|
|
raise BitcoinException('invalid prefix ({}) for WIF key (1)'.format(vch[0]))
|
|
else:
|
|
# all other keys must have a fixed first byte
|
|
if vch[0] != constants.net.WIF_PREFIX:
|
|
raise BitcoinException('invalid prefix ({}) for WIF key (2)'.format(vch[0]))
|
|
|
|
if len(vch) not in [33, 34]:
|
|
raise BitcoinException('invalid vch len for WIF key: {}'.format(len(vch)))
|
|
compressed = len(vch) == 34
|
|
secret_bytes = vch[1:33]
|
|
# we accept secrets outside curve range; cast into range here:
|
|
secret_bytes = ecc.ECPrivkey.normalize_secret_bytes(secret_bytes)
|
|
return txin_type, secret_bytes, compressed
|
|
|
|
|
|
def is_compressed(sec):
|
|
return deserialize_privkey(sec)[2]
|
|
|
|
|
|
def address_from_private_key(sec):
|
|
txin_type, privkey, compressed = deserialize_privkey(sec)
|
|
public_key = ecc.ECPrivkey(privkey).get_public_key_hex(compressed=compressed)
|
|
return pubkey_to_address(txin_type, public_key)
|
|
|
|
def is_segwit_address(addr):
|
|
try:
|
|
witver, witprog = segwit_addr.decode(constants.net.SEGWIT_HRP, addr)
|
|
except Exception as e:
|
|
return False
|
|
return witprog is not None
|
|
|
|
def is_b58_address(addr):
|
|
try:
|
|
addrtype, h = b58_address_to_hash160(addr)
|
|
except Exception as e:
|
|
return False
|
|
if addrtype not in [constants.net.ADDRTYPE_P2PKH, constants.net.ADDRTYPE_P2SH]:
|
|
return False
|
|
return addr == hash160_to_b58_address(h, addrtype)
|
|
|
|
def is_address(addr):
|
|
return is_segwit_address(addr) or is_b58_address(addr)
|
|
|
|
|
|
def is_private_key(key):
|
|
try:
|
|
k = deserialize_privkey(key)
|
|
return k is not False
|
|
except:
|
|
return False
|
|
|
|
|
|
########### end pywallet functions #######################
|
|
|
|
def is_minikey(text):
|
|
# Minikeys are typically 22 or 30 characters, but this routine
|
|
# permits any length of 20 or more provided the minikey is valid.
|
|
# A valid minikey must begin with an 'S', be in base58, and when
|
|
# suffixed with '?' have its SHA256 hash begin with a zero byte.
|
|
# They are widely used in Casascius physical bitcoins.
|
|
return (len(text) >= 20 and text[0] == 'S'
|
|
and all(ord(c) in __b58chars for c in text)
|
|
and sha256(text + '?')[0] == 0x00)
|
|
|
|
def minikey_to_private_key(text):
|
|
return sha256(text)
|
|
|
|
|
|
###################################### BIP32 ##############################
|
|
|
|
BIP32_PRIME = 0x80000000
|
|
|
|
|
|
def protect_against_invalid_ecpoint(func):
|
|
def func_wrapper(*args):
|
|
n = args[-1]
|
|
while True:
|
|
is_prime = n & BIP32_PRIME
|
|
try:
|
|
return func(*args[:-1], n=n)
|
|
except ecc.InvalidECPointException:
|
|
print_error('bip32 protect_against_invalid_ecpoint: skipping index')
|
|
n += 1
|
|
is_prime2 = n & BIP32_PRIME
|
|
if is_prime != is_prime2: raise OverflowError()
|
|
return func_wrapper
|
|
|
|
|
|
# Child private key derivation function (from master private key)
|
|
# k = master private key (32 bytes)
|
|
# c = master chain code (extra entropy for key derivation) (32 bytes)
|
|
# n = the index of the key we want to derive. (only 32 bits will be used)
|
|
# If n is hardened (i.e. the 32nd bit is set), the resulting private key's
|
|
# corresponding public key can NOT be determined without the master private key.
|
|
# However, if n is not hardened, the resulting private key's corresponding
|
|
# public key can be determined without the master private key.
|
|
@protect_against_invalid_ecpoint
|
|
def CKD_priv(k, c, n):
|
|
if n < 0: raise ValueError('the bip32 index needs to be non-negative')
|
|
is_prime = n & BIP32_PRIME
|
|
return _CKD_priv(k, c, bfh(rev_hex(int_to_hex(n,4))), is_prime)
|
|
|
|
|
|
def _CKD_priv(k, c, s, is_prime):
|
|
try:
|
|
keypair = ecc.ECPrivkey(k)
|
|
except ecc.InvalidECPointException as e:
|
|
raise BitcoinException('Impossible xprv (not within curve order)') from e
|
|
cK = keypair.get_public_key_bytes(compressed=True)
|
|
data = bytes([0]) + k + s if is_prime else cK + s
|
|
I = hmac_oneshot(c, data, hashlib.sha512)
|
|
I_left = ecc.string_to_number(I[0:32])
|
|
k_n = (I_left + ecc.string_to_number(k)) % ecc.CURVE_ORDER
|
|
if I_left >= ecc.CURVE_ORDER or k_n == 0:
|
|
raise ecc.InvalidECPointException()
|
|
k_n = ecc.number_to_string(k_n, ecc.CURVE_ORDER)
|
|
c_n = I[32:]
|
|
return k_n, c_n
|
|
|
|
# Child public key derivation function (from public key only)
|
|
# K = master public key
|
|
# c = master chain code
|
|
# n = index of key we want to derive
|
|
# This function allows us to find the nth public key, as long as n is
|
|
# not hardened. If n is hardened, we need the master private key to find it.
|
|
@protect_against_invalid_ecpoint
|
|
def CKD_pub(cK, c, n):
|
|
if n < 0: raise ValueError('the bip32 index needs to be non-negative')
|
|
if n & BIP32_PRIME: raise Exception()
|
|
return _CKD_pub(cK, c, bfh(rev_hex(int_to_hex(n,4))))
|
|
|
|
# helper function, callable with arbitrary string.
|
|
# note: 's' does not need to fit into 32 bits here! (c.f. trustedcoin billing)
|
|
def _CKD_pub(cK, c, s):
|
|
I = hmac_oneshot(c, cK + s, hashlib.sha512)
|
|
pubkey = ecc.ECPrivkey(I[0:32]) + ecc.ECPubkey(cK)
|
|
if pubkey.is_at_infinity():
|
|
raise ecc.InvalidECPointException()
|
|
cK_n = pubkey.get_public_key_bytes(compressed=True)
|
|
c_n = I[32:]
|
|
return cK_n, c_n
|
|
|
|
|
|
def xprv_header(xtype, *, net=None):
|
|
if net is None:
|
|
net = constants.net
|
|
return bfh("%08x" % net.XPRV_HEADERS[xtype])
|
|
|
|
|
|
def xpub_header(xtype, *, net=None):
|
|
if net is None:
|
|
net = constants.net
|
|
return bfh("%08x" % net.XPUB_HEADERS[xtype])
|
|
|
|
|
|
def serialize_xprv(xtype, c, k, depth=0, fingerprint=b'\x00'*4,
|
|
child_number=b'\x00'*4, *, net=None):
|
|
if not ecc.is_secret_within_curve_range(k):
|
|
raise BitcoinException('Impossible xprv (not within curve order)')
|
|
xprv = xprv_header(xtype, net=net) \
|
|
+ bytes([depth]) + fingerprint + child_number + c + bytes([0]) + k
|
|
return EncodeBase58Check(xprv)
|
|
|
|
|
|
def serialize_xpub(xtype, c, cK, depth=0, fingerprint=b'\x00'*4,
|
|
child_number=b'\x00'*4, *, net=None):
|
|
xpub = xpub_header(xtype, net=net) \
|
|
+ bytes([depth]) + fingerprint + child_number + c + cK
|
|
return EncodeBase58Check(xpub)
|
|
|
|
|
|
def deserialize_xkey(xkey, prv, *, net=None):
|
|
if net is None:
|
|
net = constants.net
|
|
xkey = DecodeBase58Check(xkey)
|
|
if len(xkey) != 78:
|
|
raise BitcoinException('Invalid length for extended key: {}'
|
|
.format(len(xkey)))
|
|
depth = xkey[4]
|
|
fingerprint = xkey[5:9]
|
|
child_number = xkey[9:13]
|
|
c = xkey[13:13+32]
|
|
header = int('0x' + bh2u(xkey[0:4]), 16)
|
|
headers = net.XPRV_HEADERS if prv else net.XPUB_HEADERS
|
|
if header not in headers.values():
|
|
raise BitcoinException('Invalid extended key format: {}'
|
|
.format(hex(header)))
|
|
xtype = list(headers.keys())[list(headers.values()).index(header)]
|
|
n = 33 if prv else 32
|
|
K_or_k = xkey[13+n:]
|
|
if prv and not ecc.is_secret_within_curve_range(K_or_k):
|
|
raise BitcoinException('Impossible xprv (not within curve order)')
|
|
return xtype, depth, fingerprint, child_number, c, K_or_k
|
|
|
|
|
|
def deserialize_xpub(xkey, *, net=None):
|
|
return deserialize_xkey(xkey, False, net=net)
|
|
|
|
def deserialize_xprv(xkey, *, net=None):
|
|
return deserialize_xkey(xkey, True, net=net)
|
|
|
|
def xpub_type(x):
|
|
return deserialize_xpub(x)[0]
|
|
|
|
|
|
def is_xpub(text):
|
|
try:
|
|
deserialize_xpub(text)
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
|
|
def is_xprv(text):
|
|
try:
|
|
deserialize_xprv(text)
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
|
|
def xpub_from_xprv(xprv):
|
|
xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv)
|
|
cK = ecc.ECPrivkey(k).get_public_key_bytes(compressed=True)
|
|
return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number)
|
|
|
|
|
|
def bip32_root(seed, xtype):
|
|
I = hmac_oneshot(b"Bitcoin seed", seed, hashlib.sha512)
|
|
master_k = I[0:32]
|
|
master_c = I[32:]
|
|
# create xprv first, as that will check if master_k is within curve order
|
|
xprv = serialize_xprv(xtype, master_c, master_k)
|
|
cK = ecc.ECPrivkey(master_k).get_public_key_bytes(compressed=True)
|
|
xpub = serialize_xpub(xtype, master_c, cK)
|
|
return xprv, xpub
|
|
|
|
|
|
def xpub_from_pubkey(xtype, cK):
|
|
if cK[0] not in (0x02, 0x03):
|
|
raise ValueError('Unexpected first byte: {}'.format(cK[0]))
|
|
return serialize_xpub(xtype, b'\x00'*32, cK)
|
|
|
|
|
|
def bip32_derivation(s):
|
|
if not s.startswith('m/'):
|
|
raise ValueError('invalid bip32 derivation path: {}'.format(s))
|
|
s = s[2:]
|
|
for n in s.split('/'):
|
|
if n == '': continue
|
|
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
|
|
yield i
|
|
|
|
def is_bip32_derivation(x):
|
|
try:
|
|
[ i for i in bip32_derivation(x)]
|
|
return True
|
|
except :
|
|
return False
|
|
|
|
def bip32_private_derivation(xprv, branch, sequence):
|
|
if not sequence.startswith(branch):
|
|
raise ValueError('incompatible branch ({}) and sequence ({})'
|
|
.format(branch, sequence))
|
|
if branch == sequence:
|
|
return xprv, xpub_from_xprv(xprv)
|
|
xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv)
|
|
sequence = sequence[len(branch):]
|
|
for n in sequence.split('/'):
|
|
if n == '': continue
|
|
i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
|
|
parent_k = k
|
|
k, c = CKD_priv(k, c, i)
|
|
depth += 1
|
|
parent_cK = ecc.ECPrivkey(parent_k).get_public_key_bytes(compressed=True)
|
|
fingerprint = hash_160(parent_cK)[0:4]
|
|
child_number = bfh("%08X"%i)
|
|
cK = ecc.ECPrivkey(k).get_public_key_bytes(compressed=True)
|
|
xpub = serialize_xpub(xtype, c, cK, depth, fingerprint, child_number)
|
|
xprv = serialize_xprv(xtype, c, k, depth, fingerprint, child_number)
|
|
return xprv, xpub
|
|
|
|
|
|
def bip32_public_derivation(xpub, branch, sequence):
|
|
xtype, depth, fingerprint, child_number, c, cK = deserialize_xpub(xpub)
|
|
if not sequence.startswith(branch):
|
|
raise ValueError('incompatible branch ({}) and sequence ({})'
|
|
.format(branch, sequence))
|
|
sequence = sequence[len(branch):]
|
|
for n in sequence.split('/'):
|
|
if n == '': continue
|
|
i = int(n)
|
|
parent_cK = cK
|
|
cK, c = CKD_pub(cK, c, i)
|
|
depth += 1
|
|
fingerprint = hash_160(parent_cK)[0:4]
|
|
child_number = bfh("%08X"%i)
|
|
return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number)
|
|
|
|
|
|
def bip32_private_key(sequence, k, chain):
|
|
for i in sequence:
|
|
k, chain = CKD_priv(k, chain, i)
|
|
return k
|
|
|