You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

659 lines
19 KiB

# -*- coding: utf-8 -*-
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2011 thomasv@gitorious
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import hashlib
from typing import List, Tuple, TYPE_CHECKING, Optional, Union
from enum import IntEnum
from .util import bfh, bh2u, BitcoinException, assert_bytes, to_bytes, inv_dict
from . import version
from . import segwit_addr
from . import constants
from . import ecc
from .crypto import sha256d, sha256, hash_160, hmac_oneshot
if TYPE_CHECKING:
from .network import Network
################################## transactions
COINBASE_MATURITY = 100
COIN = 100000000
TOTAL_COIN_SUPPLY_LIMIT_IN_BTC = 21000000
# supported types of transaction outputs
TYPE_ADDRESS = 0
TYPE_PUBKEY = 1
TYPE_SCRIPT = 2
class opcodes(IntEnum):
# push value
OP_0 = 0x00
OP_FALSE = OP_0
OP_PUSHDATA1 = 0x4c
OP_PUSHDATA2 = 0x4d
OP_PUSHDATA4 = 0x4e
OP_1NEGATE = 0x4f
OP_RESERVED = 0x50
OP_1 = 0x51
OP_TRUE = OP_1
OP_2 = 0x52
OP_3 = 0x53
OP_4 = 0x54
OP_5 = 0x55
OP_6 = 0x56
OP_7 = 0x57
OP_8 = 0x58
OP_9 = 0x59
OP_10 = 0x5a
OP_11 = 0x5b
OP_12 = 0x5c
OP_13 = 0x5d
OP_14 = 0x5e
OP_15 = 0x5f
OP_16 = 0x60
# control
OP_NOP = 0x61
OP_VER = 0x62
OP_IF = 0x63
OP_NOTIF = 0x64
OP_VERIF = 0x65
OP_VERNOTIF = 0x66
OP_ELSE = 0x67
OP_ENDIF = 0x68
OP_VERIFY = 0x69
OP_RETURN = 0x6a
# stack ops
OP_TOALTSTACK = 0x6b
OP_FROMALTSTACK = 0x6c
OP_2DROP = 0x6d
OP_2DUP = 0x6e
OP_3DUP = 0x6f
OP_2OVER = 0x70
OP_2ROT = 0x71
OP_2SWAP = 0x72
OP_IFDUP = 0x73
OP_DEPTH = 0x74
OP_DROP = 0x75
OP_DUP = 0x76
OP_NIP = 0x77
OP_OVER = 0x78
OP_PICK = 0x79
OP_ROLL = 0x7a
OP_ROT = 0x7b
OP_SWAP = 0x7c
OP_TUCK = 0x7d
# splice ops
OP_CAT = 0x7e
OP_SUBSTR = 0x7f
OP_LEFT = 0x80
OP_RIGHT = 0x81
OP_SIZE = 0x82
# bit logic
OP_INVERT = 0x83
OP_AND = 0x84
OP_OR = 0x85
OP_XOR = 0x86
OP_EQUAL = 0x87
OP_EQUALVERIFY = 0x88
OP_RESERVED1 = 0x89
OP_RESERVED2 = 0x8a
# numeric
OP_1ADD = 0x8b
OP_1SUB = 0x8c
OP_2MUL = 0x8d
OP_2DIV = 0x8e
OP_NEGATE = 0x8f
OP_ABS = 0x90
OP_NOT = 0x91
OP_0NOTEQUAL = 0x92
OP_ADD = 0x93
OP_SUB = 0x94
OP_MUL = 0x95
OP_DIV = 0x96
OP_MOD = 0x97
OP_LSHIFT = 0x98
OP_RSHIFT = 0x99
OP_BOOLAND = 0x9a
OP_BOOLOR = 0x9b
OP_NUMEQUAL = 0x9c
OP_NUMEQUALVERIFY = 0x9d
OP_NUMNOTEQUAL = 0x9e
OP_LESSTHAN = 0x9f
OP_GREATERTHAN = 0xa0
OP_LESSTHANOREQUAL = 0xa1
OP_GREATERTHANOREQUAL = 0xa2
OP_MIN = 0xa3
OP_MAX = 0xa4
OP_WITHIN = 0xa5
# crypto
OP_RIPEMD160 = 0xa6
OP_SHA1 = 0xa7
OP_SHA256 = 0xa8
OP_HASH160 = 0xa9
OP_HASH256 = 0xaa
OP_CODESEPARATOR = 0xab
OP_CHECKSIG = 0xac
OP_CHECKSIGVERIFY = 0xad
OP_CHECKMULTISIG = 0xae
OP_CHECKMULTISIGVERIFY = 0xaf
# expansion
OP_NOP1 = 0xb0
OP_CHECKLOCKTIMEVERIFY = 0xb1
OP_NOP2 = OP_CHECKLOCKTIMEVERIFY
OP_CHECKSEQUENCEVERIFY = 0xb2
OP_NOP3 = OP_CHECKSEQUENCEVERIFY
OP_NOP4 = 0xb3
OP_NOP5 = 0xb4
OP_NOP6 = 0xb5
OP_NOP7 = 0xb6
OP_NOP8 = 0xb7
OP_NOP9 = 0xb8
OP_NOP10 = 0xb9
OP_INVALIDOPCODE = 0xff
def hex(self) -> str:
return bytes([self]).hex()
def rev_hex(s: str) -> str:
return bh2u(bfh(s)[::-1])
def int_to_hex(i: int, length: int=1) -> str:
"""Converts int to little-endian hex string.
`length` is the number of bytes available
"""
if not isinstance(i, int):
raise TypeError('{} instead of int'.format(i))
range_size = pow(256, length)
if i < -(range_size//2) or i >= range_size:
raise OverflowError('cannot convert int {} to hex ({} bytes)'.format(i, length))
if i < 0:
# two's complement
i = range_size + i
s = hex(i)[2:].rstrip('L')
s = "0"*(2*length - len(s)) + s
return rev_hex(s)
def script_num_to_hex(i: int) -> str:
"""See CScriptNum in Bitcoin Core.
Encodes an integer as hex, to be used in script.
ported from https://github.com/bitcoin/bitcoin/blob/8cbc5c4be4be22aca228074f087a374a7ec38be8/src/script/script.h#L326
"""
if i == 0:
return ''
result = bytearray()
neg = i < 0
absvalue = abs(i)
while absvalue > 0:
result.append(absvalue & 0xff)
absvalue >>= 8
if result[-1] & 0x80:
result.append(0x80 if neg else 0x00)
elif neg:
result[-1] |= 0x80
return bh2u(result)
def var_int(i: int) -> str:
# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
if i<0xfd:
return int_to_hex(i)
elif i<=0xffff:
return "fd"+int_to_hex(i,2)
elif i<=0xffffffff:
return "fe"+int_to_hex(i,4)
else:
return "ff"+int_to_hex(i,8)
def witness_push(item: str) -> str:
"""Returns data in the form it should be present in the witness.
hex -> hex
"""
return var_int(len(item) // 2) + item
def _op_push(i: int) -> str:
if i < opcodes.OP_PUSHDATA1:
return int_to_hex(i)
elif i <= 0xff:
return opcodes.OP_PUSHDATA1.hex() + int_to_hex(i, 1)
elif i <= 0xffff:
return opcodes.OP_PUSHDATA2.hex() + int_to_hex(i, 2)
else:
return opcodes.OP_PUSHDATA4.hex() + int_to_hex(i, 4)
def push_script(data: str) -> str:
"""Returns pushed data to the script, automatically
choosing canonical opcodes depending on the length of the data.
hex -> hex
ported from https://github.com/btcsuite/btcd/blob/fdc2bc867bda6b351191b5872d2da8270df00d13/txscript/scriptbuilder.go#L128
"""
data = bfh(data)
data_len = len(data)
# "small integer" opcodes
if data_len == 0 or data_len == 1 and data[0] == 0:
return opcodes.OP_0.hex()
elif data_len == 1 and data[0] <= 16:
return bh2u(bytes([opcodes.OP_1 - 1 + data[0]]))
elif data_len == 1 and data[0] == 0x81:
return opcodes.OP_1NEGATE.hex()
return _op_push(data_len) + bh2u(data)
def add_number_to_script(i: int) -> bytes:
return bfh(push_script(script_num_to_hex(i)))
def relayfee(network: 'Network'=None) -> int:
from .simple_config import FEERATE_DEFAULT_RELAY
MAX_RELAY_FEE = 50000
f = network.relay_fee if network and network.relay_fee else FEERATE_DEFAULT_RELAY
return min(f, MAX_RELAY_FEE)
def dust_threshold(network: 'Network'=None) -> int:
# Change <= dust threshold is added to the tx fee
return 182 * 3 * relayfee(network) // 1000
def hash_encode(x: bytes) -> str:
return bh2u(x[::-1])
def hash_decode(x: str) -> bytes:
return bfh(x)[::-1]
############ functions from pywallet #####################
def hash160_to_b58_address(h160: bytes, addrtype: int) -> str:
s = bytes([addrtype]) + h160
s = s + sha256d(s)[0:4]
return base_encode(s, base=58)
def b58_address_to_hash160(addr: str) -> Tuple[int, bytes]:
addr = to_bytes(addr, 'ascii')
_bytes = base_decode(addr, 25, base=58)
return _bytes[0], _bytes[1:21]
def hash160_to_p2pkh(h160: bytes, *, net=None) -> str:
if net is None: net = constants.net
return hash160_to_b58_address(h160, net.ADDRTYPE_P2PKH)
def hash160_to_p2sh(h160: bytes, *, net=None) -> str:
if net is None: net = constants.net
return hash160_to_b58_address(h160, net.ADDRTYPE_P2SH)
def public_key_to_p2pkh(public_key: bytes, *, net=None) -> str:
if net is None: net = constants.net
return hash160_to_p2pkh(hash_160(public_key), net=net)
def hash_to_segwit_addr(h: bytes, witver: int, *, net=None) -> str:
if net is None: net = constants.net
return segwit_addr.encode(net.SEGWIT_HRP, witver, h)
def public_key_to_p2wpkh(public_key: bytes, *, net=None) -> str:
if net is None: net = constants.net
return hash_to_segwit_addr(hash_160(public_key), witver=0, net=net)
def script_to_p2wsh(script: str, *, net=None) -> str:
if net is None: net = constants.net
return hash_to_segwit_addr(sha256(bfh(script)), witver=0, net=net)
def p2wpkh_nested_script(pubkey: str) -> str:
pkh = bh2u(hash_160(bfh(pubkey)))
return '00' + push_script(pkh)
def p2wsh_nested_script(witness_script: str) -> str:
wsh = bh2u(sha256(bfh(witness_script)))
return '00' + push_script(wsh)
def pubkey_to_address(txin_type: str, pubkey: str, *, net=None) -> str:
if net is None: net = constants.net
if txin_type == 'p2pkh':
return public_key_to_p2pkh(bfh(pubkey), net=net)
elif txin_type == 'p2wpkh':
return public_key_to_p2wpkh(bfh(pubkey), net=net)
elif txin_type == 'p2wpkh-p2sh':
scriptSig = p2wpkh_nested_script(pubkey)
return hash160_to_p2sh(hash_160(bfh(scriptSig)), net=net)
else:
raise NotImplementedError(txin_type)
def redeem_script_to_address(txin_type: str, redeem_script: str, *, net=None) -> str:
if net is None: net = constants.net
if txin_type == 'p2sh':
return hash160_to_p2sh(hash_160(bfh(redeem_script)), net=net)
elif txin_type == 'p2wsh':
return script_to_p2wsh(redeem_script, net=net)
elif txin_type == 'p2wsh-p2sh':
scriptSig = p2wsh_nested_script(redeem_script)
return hash160_to_p2sh(hash_160(bfh(scriptSig)), net=net)
else:
raise NotImplementedError(txin_type)
def script_to_address(script: str, *, net=None) -> str:
from .transaction import get_address_from_output_script
t, addr = get_address_from_output_script(bfh(script), net=net)
assert t == TYPE_ADDRESS
return addr
def address_to_script(addr: str, *, net=None) -> str:
if net is None: net = constants.net
if not is_address(addr, net=net):
raise BitcoinException(f"invalid bitcoin address: {addr}")
witver, witprog = segwit_addr.decode(net.SEGWIT_HRP, addr)
if witprog is not None:
if not (0 <= witver <= 16):
raise BitcoinException(f'impossible witness version: {witver}')
script = bh2u(add_number_to_script(witver))
script += push_script(bh2u(bytes(witprog)))
return script
addrtype, hash_160_ = b58_address_to_hash160(addr)
if addrtype == net.ADDRTYPE_P2PKH:
script = pubkeyhash_to_p2pkh_script(bh2u(hash_160_))
elif addrtype == net.ADDRTYPE_P2SH:
script = opcodes.OP_HASH160.hex()
script += push_script(bh2u(hash_160_))
script += opcodes.OP_EQUAL.hex()
else:
raise BitcoinException(f'unknown address type: {addrtype}')
return script
def address_to_scripthash(addr: str) -> str:
script = address_to_script(addr)
return script_to_scripthash(script)
def script_to_scripthash(script: str) -> str:
h = sha256(bfh(script))[0:32]
return bh2u(bytes(reversed(h)))
def public_key_to_p2pk_script(pubkey: str) -> str:
return push_script(pubkey) + opcodes.OP_CHECKSIG.hex()
def pubkeyhash_to_p2pkh_script(pubkey_hash160: str) -> str:
script = bytes([opcodes.OP_DUP, opcodes.OP_HASH160]).hex()
script += push_script(pubkey_hash160)
script += bytes([opcodes.OP_EQUALVERIFY, opcodes.OP_CHECKSIG]).hex()
return script
__b58chars = b'123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
assert len(__b58chars) == 58
__b43chars = b'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:'
assert len(__b43chars) == 43
def base_encode(v: bytes, base: int) -> str:
""" encode v, which is a string of bytes, to base58."""
assert_bytes(v)
if base not in (58, 43):
raise ValueError('not supported base: {}'.format(base))
chars = __b58chars
if base == 43:
chars = __b43chars
long_value = 0
for (i, c) in enumerate(v[::-1]):
long_value += (256**i) * c
result = bytearray()
while long_value >= base:
div, mod = divmod(long_value, base)
result.append(chars[mod])
long_value = div
result.append(chars[long_value])
# Bitcoin does a little leading-zero-compression:
# leading 0-bytes in the input become leading-1s
nPad = 0
for c in v:
if c == 0x00:
nPad += 1
else:
break
result.extend([chars[0]] * nPad)
result.reverse()
return result.decode('ascii')
def base_decode(v: Union[bytes, str], length: Optional[int], base: int) -> Optional[bytes]:
""" decode v into a string of len bytes."""
# assert_bytes(v)
v = to_bytes(v, 'ascii')
if base not in (58, 43):
raise ValueError('not supported base: {}'.format(base))
chars = __b58chars
if base == 43:
chars = __b43chars
long_value = 0
for (i, c) in enumerate(v[::-1]):
digit = chars.find(bytes([c]))
if digit == -1:
raise ValueError('Forbidden character {} for base {}'.format(c, base))
long_value += digit * (base**i)
result = bytearray()
while long_value >= 256:
div, mod = divmod(long_value, 256)
result.append(mod)
long_value = div
result.append(long_value)
nPad = 0
for c in v:
if c == chars[0]:
nPad += 1
else:
break
result.extend(b'\x00' * nPad)
if length is not None and len(result) != length:
return None
result.reverse()
return bytes(result)
class InvalidChecksum(Exception):
pass
def EncodeBase58Check(vchIn: bytes) -> str:
hash = sha256d(vchIn)
return base_encode(vchIn + hash[0:4], base=58)
def DecodeBase58Check(psz: Union[bytes, str]) -> bytes:
vchRet = base_decode(psz, None, base=58)
payload = vchRet[0:-4]
csum_found = vchRet[-4:]
csum_calculated = sha256d(payload)[0:4]
if csum_calculated != csum_found:
raise InvalidChecksum(f'calculated {bh2u(csum_calculated)}, found {bh2u(csum_found)}')
else:
return payload
# backwards compat
# extended WIF for segwit (used in 3.0.x; but still used internally)
# the keys in this dict should be a superset of what Imported Wallets can import
WIF_SCRIPT_TYPES = {
'p2pkh':0,
'p2wpkh':1,
'p2wpkh-p2sh':2,
'p2sh':5,
'p2wsh':6,
'p2wsh-p2sh':7
}
WIF_SCRIPT_TYPES_INV = inv_dict(WIF_SCRIPT_TYPES)
def is_segwit_script_type(txin_type: str) -> bool:
return txin_type in ('p2wpkh', 'p2wpkh-p2sh', 'p2wsh', 'p2wsh-p2sh')
def serialize_privkey(secret: bytes, compressed: bool, txin_type: str,
internal_use: bool=False) -> str:
# we only export secrets inside curve range
secret = ecc.ECPrivkey.normalize_secret_bytes(secret)
if internal_use:
prefix = bytes([(WIF_SCRIPT_TYPES[txin_type] + constants.net.WIF_PREFIX) & 255])
else:
prefix = bytes([constants.net.WIF_PREFIX])
suffix = b'\01' if compressed else b''
vchIn = prefix + secret + suffix
base58_wif = EncodeBase58Check(vchIn)
if internal_use:
return base58_wif
else:
return '{}:{}'.format(txin_type, base58_wif)
def deserialize_privkey(key: str) -> Tuple[str, bytes, bool]:
if is_minikey(key):
return 'p2pkh', minikey_to_private_key(key), False
txin_type = None
if ':' in key:
txin_type, key = key.split(sep=':', maxsplit=1)
if txin_type not in WIF_SCRIPT_TYPES:
raise BitcoinException('unknown script type: {}'.format(txin_type))
try:
vch = DecodeBase58Check(key)
except BaseException:
neutered_privkey = str(key)[:3] + '..' + str(key)[-2:]
raise BitcoinException("cannot deserialize privkey {}"
.format(neutered_privkey))
if txin_type is None:
# keys exported in version 3.0.x encoded script type in first byte
prefix_value = vch[0] - constants.net.WIF_PREFIX
try:
txin_type = WIF_SCRIPT_TYPES_INV[prefix_value]
except KeyError:
raise BitcoinException('invalid prefix ({}) for WIF key (1)'.format(vch[0]))
else:
# all other keys must have a fixed first byte
if vch[0] != constants.net.WIF_PREFIX:
raise BitcoinException('invalid prefix ({}) for WIF key (2)'.format(vch[0]))
if len(vch) not in [33, 34]:
raise BitcoinException('invalid vch len for WIF key: {}'.format(len(vch)))
compressed = False
if len(vch) == 34:
if vch[33] == 0x01:
compressed = True
else:
raise BitcoinException(f'invalid WIF key. length suggests compressed pubkey, '
f'but last byte is {vch[33]} != 0x01')
if is_segwit_script_type(txin_type) and not compressed:
raise BitcoinException('only compressed public keys can be used in segwit scripts')
secret_bytes = vch[1:33]
# we accept secrets outside curve range; cast into range here:
secret_bytes = ecc.ECPrivkey.normalize_secret_bytes(secret_bytes)
return txin_type, secret_bytes, compressed
def is_compressed_privkey(sec: str) -> bool:
return deserialize_privkey(sec)[2]
def address_from_private_key(sec: str) -> str:
txin_type, privkey, compressed = deserialize_privkey(sec)
public_key = ecc.ECPrivkey(privkey).get_public_key_hex(compressed=compressed)
return pubkey_to_address(txin_type, public_key)
def is_segwit_address(addr: str, *, net=None) -> bool:
if net is None: net = constants.net
try:
witver, witprog = segwit_addr.decode(net.SEGWIT_HRP, addr)
except Exception as e:
return False
return witprog is not None
def is_b58_address(addr: str, *, net=None) -> bool:
if net is None: net = constants.net
try:
addrtype, h = b58_address_to_hash160(addr)
except Exception as e:
return False
if addrtype not in [net.ADDRTYPE_P2PKH, net.ADDRTYPE_P2SH]:
return False
return addr == hash160_to_b58_address(h, addrtype)
def is_address(addr: str, *, net=None) -> bool:
if net is None: net = constants.net
return is_segwit_address(addr, net=net) \
or is_b58_address(addr, net=net)
def is_private_key(key: str, *, raise_on_error=False) -> bool:
try:
deserialize_privkey(key)
return True
except BaseException as e:
if raise_on_error:
raise
return False
########### end pywallet functions #######################
def is_minikey(text: str) -> bool:
# Minikeys are typically 22 or 30 characters, but this routine
# permits any length of 20 or more provided the minikey is valid.
# A valid minikey must begin with an 'S', be in base58, and when
# suffixed with '?' have its SHA256 hash begin with a zero byte.
# They are widely used in Casascius physical bitcoins.
return (len(text) >= 20 and text[0] == 'S'
and all(ord(c) in __b58chars for c in text)
and sha256(text + '?')[0] == 0x00)
def minikey_to_private_key(text: str) -> bytes:
return sha256(text)