You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
17 KiB
460 lines
17 KiB
# -*- coding: utf-8 -*-
|
|
#
|
|
# Electrum - lightweight Bitcoin client
|
|
# Copyright (C) 2018 The Electrum developers
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person
|
|
# obtaining a copy of this software and associated documentation files
|
|
# (the "Software"), to deal in the Software without restriction,
|
|
# including without limitation the rights to use, copy, modify, merge,
|
|
# publish, distribute, sublicense, and/or sell copies of the Software,
|
|
# and to permit persons to whom the Software is furnished to do so,
|
|
# subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be
|
|
# included in all copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import base64
|
|
import hashlib
|
|
from typing import Union, Tuple
|
|
|
|
import ecdsa
|
|
from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1
|
|
from ecdsa.curves import SECP256k1
|
|
from ecdsa.ellipticcurve import Point
|
|
from ecdsa.util import string_to_number, number_to_string
|
|
|
|
from .util import bfh, bh2u, assert_bytes, to_bytes, InvalidPassword, profiler
|
|
from .crypto import (sha256d, aes_encrypt_with_iv, aes_decrypt_with_iv, hmac_oneshot)
|
|
from .ecc_fast import do_monkey_patching_of_python_ecdsa_internals_with_libsecp256k1
|
|
from . import msqr
|
|
from . import constants
|
|
from .logging import get_logger
|
|
|
|
|
|
_logger = get_logger(__name__)
|
|
do_monkey_patching_of_python_ecdsa_internals_with_libsecp256k1()
|
|
|
|
CURVE_ORDER = SECP256k1.order
|
|
|
|
|
|
def generator():
|
|
return ECPubkey.from_point(generator_secp256k1)
|
|
|
|
|
|
def point_at_infinity():
|
|
return ECPubkey(None)
|
|
|
|
|
|
def sig_string_from_der_sig(der_sig: bytes, order=CURVE_ORDER) -> bytes:
|
|
r, s = ecdsa.util.sigdecode_der(der_sig, order)
|
|
return ecdsa.util.sigencode_string(r, s, order)
|
|
|
|
|
|
def der_sig_from_sig_string(sig_string: bytes, order=CURVE_ORDER) -> bytes:
|
|
r, s = ecdsa.util.sigdecode_string(sig_string, order)
|
|
return ecdsa.util.sigencode_der_canonize(r, s, order)
|
|
|
|
|
|
def der_sig_from_r_and_s(r: int, s: int, order=CURVE_ORDER) -> bytes:
|
|
return ecdsa.util.sigencode_der_canonize(r, s, order)
|
|
|
|
|
|
def get_r_and_s_from_der_sig(der_sig: bytes, order=CURVE_ORDER) -> Tuple[int, int]:
|
|
r, s = ecdsa.util.sigdecode_der(der_sig, order)
|
|
return r, s
|
|
|
|
|
|
def get_r_and_s_from_sig_string(sig_string: bytes, order=CURVE_ORDER) -> Tuple[int, int]:
|
|
r, s = ecdsa.util.sigdecode_string(sig_string, order)
|
|
return r, s
|
|
|
|
|
|
def sig_string_from_r_and_s(r: int, s: int, order=CURVE_ORDER) -> bytes:
|
|
return ecdsa.util.sigencode_string_canonize(r, s, order)
|
|
|
|
|
|
def point_to_ser(P, compressed=True) -> bytes:
|
|
if isinstance(P, tuple):
|
|
assert len(P) == 2, 'unexpected point: %s' % P
|
|
x, y = P
|
|
else:
|
|
x, y = P.x(), P.y()
|
|
if x is None or y is None: # infinity
|
|
return None
|
|
if compressed:
|
|
return bfh(('%02x' % (2+(y&1))) + ('%064x' % x))
|
|
return bfh('04'+('%064x' % x)+('%064x' % y))
|
|
|
|
|
|
def get_y_coord_from_x(x: int, odd: bool=True) -> int:
|
|
curve = curve_secp256k1
|
|
_p = curve.p()
|
|
_a = curve.a()
|
|
_b = curve.b()
|
|
x = x % _p
|
|
y2 = (pow(x, 3, _p) + _a * x + _b) % _p
|
|
y = msqr.modular_sqrt(y2, _p)
|
|
if curve.contains_point(x, y):
|
|
if odd == bool(y & 1):
|
|
return y
|
|
return _p - y
|
|
raise InvalidECPointException()
|
|
|
|
|
|
def ser_to_point(ser: bytes) -> Tuple[int, int]:
|
|
if ser[0] not in (0x02, 0x03, 0x04):
|
|
raise ValueError('Unexpected first byte: {}'.format(ser[0]))
|
|
if ser[0] == 0x04:
|
|
return string_to_number(ser[1:33]), string_to_number(ser[33:])
|
|
x = string_to_number(ser[1:])
|
|
return x, get_y_coord_from_x(x, ser[0] == 0x03)
|
|
|
|
|
|
def _ser_to_python_ecdsa_point(ser: bytes) -> ecdsa.ellipticcurve.Point:
|
|
x, y = ser_to_point(ser)
|
|
try:
|
|
return Point(curve_secp256k1, x, y, CURVE_ORDER)
|
|
except:
|
|
raise InvalidECPointException()
|
|
|
|
|
|
class InvalidECPointException(Exception):
|
|
"""e.g. not on curve, or infinity"""
|
|
|
|
|
|
class _MyVerifyingKey(ecdsa.VerifyingKey):
|
|
@classmethod
|
|
def from_signature(klass, sig, recid, h, curve): # TODO use libsecp??
|
|
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
|
|
from ecdsa import util, numbertheory
|
|
from . import msqr
|
|
curveFp = curve.curve
|
|
G = curve.generator
|
|
order = G.order()
|
|
# extract r,s from signature
|
|
r, s = util.sigdecode_string(sig, order)
|
|
# 1.1
|
|
x = r + (recid//2) * order
|
|
# 1.3
|
|
alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p()
|
|
beta = msqr.modular_sqrt(alpha, curveFp.p())
|
|
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
|
|
# 1.4 the constructor checks that nR is at infinity
|
|
try:
|
|
R = Point(curveFp, x, y, order)
|
|
except:
|
|
raise InvalidECPointException()
|
|
# 1.5 compute e from message:
|
|
e = string_to_number(h)
|
|
minus_e = -e % order
|
|
# 1.6 compute Q = r^-1 (sR - eG)
|
|
inv_r = numbertheory.inverse_mod(r,order)
|
|
try:
|
|
Q = inv_r * ( s * R + minus_e * G )
|
|
except:
|
|
raise InvalidECPointException()
|
|
return klass.from_public_point( Q, curve )
|
|
|
|
|
|
class _MySigningKey(ecdsa.SigningKey):
|
|
"""Enforce low S values in signatures"""
|
|
|
|
def sign_number(self, number, entropy=None, k=None):
|
|
r, s = ecdsa.SigningKey.sign_number(self, number, entropy, k)
|
|
if s > CURVE_ORDER//2:
|
|
s = CURVE_ORDER - s
|
|
return r, s
|
|
|
|
|
|
class _PubkeyForPointAtInfinity:
|
|
point = ecdsa.ellipticcurve.INFINITY
|
|
|
|
|
|
class ECPubkey(object):
|
|
|
|
def __init__(self, b: bytes):
|
|
if b is not None:
|
|
assert_bytes(b)
|
|
point = _ser_to_python_ecdsa_point(b)
|
|
self._pubkey = ecdsa.ecdsa.Public_key(generator_secp256k1, point)
|
|
else:
|
|
self._pubkey = _PubkeyForPointAtInfinity()
|
|
|
|
@classmethod
|
|
def from_sig_string(cls, sig_string: bytes, recid: int, msg_hash: bytes):
|
|
assert_bytes(sig_string)
|
|
if len(sig_string) != 64:
|
|
raise Exception('Wrong encoding')
|
|
if recid < 0 or recid > 3:
|
|
raise ValueError('recid is {}, but should be 0 <= recid <= 3'.format(recid))
|
|
ecdsa_verifying_key = _MyVerifyingKey.from_signature(sig_string, recid, msg_hash, curve=SECP256k1)
|
|
ecdsa_point = ecdsa_verifying_key.pubkey.point
|
|
return ECPubkey.from_point(ecdsa_point)
|
|
|
|
@classmethod
|
|
def from_signature65(cls, sig: bytes, msg_hash: bytes):
|
|
if len(sig) != 65:
|
|
raise Exception("Wrong encoding")
|
|
nV = sig[0]
|
|
if nV < 27 or nV >= 35:
|
|
raise Exception("Bad encoding")
|
|
if nV >= 31:
|
|
compressed = True
|
|
nV -= 4
|
|
else:
|
|
compressed = False
|
|
recid = nV - 27
|
|
return cls.from_sig_string(sig[1:], recid, msg_hash), compressed
|
|
|
|
@classmethod
|
|
def from_point(cls, point):
|
|
_bytes = point_to_ser(point, compressed=False) # faster than compressed
|
|
return ECPubkey(_bytes)
|
|
|
|
def get_public_key_bytes(self, compressed=True):
|
|
if self.is_at_infinity(): raise Exception('point is at infinity')
|
|
return point_to_ser(self.point(), compressed)
|
|
|
|
def get_public_key_hex(self, compressed=True):
|
|
return bh2u(self.get_public_key_bytes(compressed))
|
|
|
|
def point(self) -> Tuple[int, int]:
|
|
return self._pubkey.point.x(), self._pubkey.point.y()
|
|
|
|
def __repr__(self):
|
|
return f"<ECPubkey {self.get_public_key_hex()}>"
|
|
|
|
def __mul__(self, other: int):
|
|
if not isinstance(other, int):
|
|
raise TypeError('multiplication not defined for ECPubkey and {}'.format(type(other)))
|
|
ecdsa_point = self._pubkey.point * other
|
|
return self.from_point(ecdsa_point)
|
|
|
|
def __rmul__(self, other: int):
|
|
return self * other
|
|
|
|
def __add__(self, other):
|
|
if not isinstance(other, ECPubkey):
|
|
raise TypeError('addition not defined for ECPubkey and {}'.format(type(other)))
|
|
ecdsa_point = self._pubkey.point + other._pubkey.point
|
|
return self.from_point(ecdsa_point)
|
|
|
|
def __eq__(self, other):
|
|
return self._pubkey.point.x() == other._pubkey.point.x() \
|
|
and self._pubkey.point.y() == other._pubkey.point.y()
|
|
|
|
def __ne__(self, other):
|
|
return not (self == other)
|
|
|
|
def verify_message_for_address(self, sig65: bytes, message: bytes, algo=lambda x: sha256d(msg_magic(x))) -> None:
|
|
assert_bytes(message)
|
|
h = algo(message)
|
|
public_key, compressed = self.from_signature65(sig65, h)
|
|
# check public key
|
|
if public_key != self:
|
|
raise Exception("Bad signature")
|
|
# check message
|
|
self.verify_message_hash(sig65[1:], h)
|
|
|
|
def verify_message_hash(self, sig_string: bytes, msg_hash: bytes) -> None:
|
|
assert_bytes(sig_string)
|
|
if len(sig_string) != 64:
|
|
raise Exception('Wrong encoding')
|
|
ecdsa_point = self._pubkey.point
|
|
verifying_key = _MyVerifyingKey.from_public_point(ecdsa_point, curve=SECP256k1)
|
|
verifying_key.verify_digest(sig_string, msg_hash, sigdecode=ecdsa.util.sigdecode_string)
|
|
|
|
def encrypt_message(self, message: bytes, magic: bytes = b'BIE1') -> bytes:
|
|
"""
|
|
ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac
|
|
"""
|
|
assert_bytes(message)
|
|
|
|
randint = ecdsa.util.randrange(CURVE_ORDER)
|
|
ephemeral_exponent = number_to_string(randint, CURVE_ORDER)
|
|
ephemeral = ECPrivkey(ephemeral_exponent)
|
|
ecdh_key = (self * ephemeral.secret_scalar).get_public_key_bytes(compressed=True)
|
|
key = hashlib.sha512(ecdh_key).digest()
|
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
|
|
ciphertext = aes_encrypt_with_iv(key_e, iv, message)
|
|
ephemeral_pubkey = ephemeral.get_public_key_bytes(compressed=True)
|
|
encrypted = magic + ephemeral_pubkey + ciphertext
|
|
mac = hmac_oneshot(key_m, encrypted, hashlib.sha256)
|
|
|
|
return base64.b64encode(encrypted + mac)
|
|
|
|
@classmethod
|
|
def order(cls):
|
|
return CURVE_ORDER
|
|
|
|
def is_at_infinity(self):
|
|
return self == point_at_infinity()
|
|
|
|
@classmethod
|
|
def is_pubkey_bytes(cls, b: bytes):
|
|
try:
|
|
ECPubkey(b)
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
|
|
def msg_magic(message: bytes) -> bytes:
|
|
from .bitcoin import var_int
|
|
length = bfh(var_int(len(message)))
|
|
return b"\x18Bitcoin Signed Message:\n" + length + message
|
|
|
|
|
|
def verify_signature(pubkey, sig, h):
|
|
try:
|
|
ECPubkey(pubkey).verify_message_hash(sig, h)
|
|
except:
|
|
return False
|
|
return True
|
|
|
|
def verify_message_with_address(address: str, sig65: bytes, message: bytes, *, net=None):
|
|
from .bitcoin import pubkey_to_address
|
|
assert_bytes(sig65, message)
|
|
if net is None: net = constants.net
|
|
try:
|
|
h = sha256d(msg_magic(message))
|
|
public_key, compressed = ECPubkey.from_signature65(sig65, h)
|
|
# check public key using the address
|
|
pubkey_hex = public_key.get_public_key_hex(compressed)
|
|
for txin_type in ['p2pkh','p2wpkh','p2wpkh-p2sh']:
|
|
addr = pubkey_to_address(txin_type, pubkey_hex, net=net)
|
|
if address == addr:
|
|
break
|
|
else:
|
|
raise Exception("Bad signature")
|
|
# check message
|
|
public_key.verify_message_hash(sig65[1:], h)
|
|
return True
|
|
except Exception as e:
|
|
_logger.info(f"Verification error: {repr(e)}")
|
|
return False
|
|
|
|
|
|
def is_secret_within_curve_range(secret: Union[int, bytes]) -> bool:
|
|
if isinstance(secret, bytes):
|
|
secret = string_to_number(secret)
|
|
return 0 < secret < CURVE_ORDER
|
|
|
|
|
|
class ECPrivkey(ECPubkey):
|
|
|
|
def __init__(self, privkey_bytes: bytes):
|
|
assert_bytes(privkey_bytes)
|
|
if len(privkey_bytes) != 32:
|
|
raise Exception('unexpected size for secret. should be 32 bytes, not {}'.format(len(privkey_bytes)))
|
|
secret = string_to_number(privkey_bytes)
|
|
if not is_secret_within_curve_range(secret):
|
|
raise InvalidECPointException('Invalid secret scalar (not within curve order)')
|
|
self.secret_scalar = secret
|
|
|
|
point = generator_secp256k1 * secret
|
|
super().__init__(point_to_ser(point))
|
|
self._privkey = ecdsa.ecdsa.Private_key(self._pubkey, secret)
|
|
|
|
@classmethod
|
|
def from_secret_scalar(cls, secret_scalar: int):
|
|
secret_bytes = number_to_string(secret_scalar, CURVE_ORDER)
|
|
return ECPrivkey(secret_bytes)
|
|
|
|
@classmethod
|
|
def from_arbitrary_size_secret(cls, privkey_bytes: bytes):
|
|
"""This method is only for legacy reasons. Do not introduce new code that uses it.
|
|
Unlike the default constructor, this method does not require len(privkey_bytes) == 32,
|
|
and the secret does not need to be within the curve order either.
|
|
"""
|
|
return ECPrivkey(cls.normalize_secret_bytes(privkey_bytes))
|
|
|
|
@classmethod
|
|
def normalize_secret_bytes(cls, privkey_bytes: bytes) -> bytes:
|
|
scalar = string_to_number(privkey_bytes) % CURVE_ORDER
|
|
if scalar == 0:
|
|
raise Exception('invalid EC private key scalar: zero')
|
|
privkey_32bytes = number_to_string(scalar, CURVE_ORDER)
|
|
return privkey_32bytes
|
|
|
|
def __repr__(self):
|
|
return f"<ECPrivkey {self.get_public_key_hex()}>"
|
|
|
|
def get_secret_bytes(self) -> bytes:
|
|
return number_to_string(self.secret_scalar, CURVE_ORDER)
|
|
|
|
def sign(self, data: bytes, sigencode=None, sigdecode=None) -> bytes:
|
|
if sigencode is None:
|
|
sigencode = sig_string_from_r_and_s
|
|
if sigdecode is None:
|
|
sigdecode = get_r_and_s_from_sig_string
|
|
private_key = _MySigningKey.from_secret_exponent(self.secret_scalar, curve=SECP256k1)
|
|
sig = private_key.sign_digest_deterministic(data, hashfunc=hashlib.sha256, sigencode=sigencode)
|
|
public_key = private_key.get_verifying_key()
|
|
if not public_key.verify_digest(sig, data, sigdecode=sigdecode):
|
|
raise Exception('Sanity check verifying our own signature failed.')
|
|
return sig
|
|
|
|
def sign_transaction(self, hashed_preimage: bytes) -> bytes:
|
|
return self.sign(hashed_preimage,
|
|
sigencode=der_sig_from_r_and_s,
|
|
sigdecode=get_r_and_s_from_der_sig)
|
|
|
|
def sign_message(self, message: bytes, is_compressed: bool, algo=lambda x: sha256d(msg_magic(x))) -> bytes:
|
|
def bruteforce_recid(sig_string):
|
|
for recid in range(4):
|
|
sig65 = construct_sig65(sig_string, recid, is_compressed)
|
|
try:
|
|
self.verify_message_for_address(sig65, message, algo)
|
|
return sig65, recid
|
|
except Exception as e:
|
|
continue
|
|
else:
|
|
raise Exception("error: cannot sign message. no recid fits..")
|
|
|
|
message = to_bytes(message, 'utf8')
|
|
msg_hash = algo(message)
|
|
sig_string = self.sign(msg_hash,
|
|
sigencode=sig_string_from_r_and_s,
|
|
sigdecode=get_r_and_s_from_sig_string)
|
|
sig65, recid = bruteforce_recid(sig_string)
|
|
return sig65
|
|
|
|
def decrypt_message(self, encrypted: Tuple[str, bytes], magic: bytes=b'BIE1') -> bytes:
|
|
encrypted = base64.b64decode(encrypted)
|
|
if len(encrypted) < 85:
|
|
raise Exception('invalid ciphertext: length')
|
|
magic_found = encrypted[:4]
|
|
ephemeral_pubkey_bytes = encrypted[4:37]
|
|
ciphertext = encrypted[37:-32]
|
|
mac = encrypted[-32:]
|
|
if magic_found != magic:
|
|
raise Exception('invalid ciphertext: invalid magic bytes')
|
|
try:
|
|
ecdsa_point = _ser_to_python_ecdsa_point(ephemeral_pubkey_bytes)
|
|
except AssertionError as e:
|
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey') from e
|
|
if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ecdsa_point.x(), ecdsa_point.y()):
|
|
raise Exception('invalid ciphertext: invalid ephemeral pubkey')
|
|
ephemeral_pubkey = ECPubkey.from_point(ecdsa_point)
|
|
ecdh_key = (ephemeral_pubkey * self.secret_scalar).get_public_key_bytes(compressed=True)
|
|
key = hashlib.sha512(ecdh_key).digest()
|
|
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
|
|
if mac != hmac_oneshot(key_m, encrypted[:-32], hashlib.sha256):
|
|
raise InvalidPassword()
|
|
return aes_decrypt_with_iv(key_e, iv, ciphertext)
|
|
|
|
|
|
def construct_sig65(sig_string: bytes, recid: int, is_compressed: bool) -> bytes:
|
|
comp = 4 if is_compressed else 0
|
|
return bytes([27 + recid + comp]) + sig_string
|
|
|