You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

718 lines
23 KiB

#!/usr/bin/env python2
# -*- mode: python -*-
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2016 The Electrum developers
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from unicodedata import normalize
from version import *
import bitcoin
from bitcoin import pw_encode, pw_decode, bip32_root, bip32_private_derivation, bip32_public_derivation, bip32_private_key, deserialize_xkey
from bitcoin import public_key_from_private_key, public_key_to_bc_address
from bitcoin import *
from bitcoin import is_old_seed, is_new_seed
from util import PrintError, InvalidPassword
from mnemonic import Mnemonic
class KeyStore(PrintError):
def has_seed(self):
return False
def has_password(self):
return False
def is_watching_only(self):
return False
def can_import(self):
return False
class Software_KeyStore(KeyStore):
def __init__(self):
KeyStore.__init__(self)
self.use_encryption = False
def has_password(self):
return self.use_encryption
def sign_message(self, sequence, message, password):
sec = self.get_private_key(sequence, password)
key = regenerate_key(sec)
compressed = is_compressed(sec)
return key.sign_message(message, compressed)
def decrypt_message(self, sequence, message, password):
sec = self.get_private_key(sequence, password)
ec = regenerate_key(sec)
decrypted = ec.decrypt_message(message)
return decrypted
class Imported_KeyStore(Software_KeyStore):
# keystore for imported private keys
def __init__(self):
Software_KeyStore.__init__(self)
self.keypairs = {}
def is_deterministic(self):
return False
def can_change_password(self):
return True
def get_master_public_key(self):
return None
def load(self, storage, name):
self.keypairs = storage.get('keypairs', {})
self.use_encryption = storage.get('use_encryption', False)
self.receiving_pubkeys = self.keypairs.keys()
self.change_pubkeys = []
def save(self, storage, root_name):
storage.put('key_type', 'imported')
storage.put('keypairs', self.keypairs)
storage.put('use_encryption', self.use_encryption)
def can_import(self):
return True
def check_password(self, password):
self.get_private_key((0,0), password)
def import_key(self, sec, password):
if not self.can_import():
raise BaseException('This wallet cannot import private keys')
try:
pubkey = public_key_from_private_key(sec)
except Exception:
raise Exception('Invalid private key')
self.keypairs[pubkey] = sec
return pubkey
def delete_imported_key(self, key):
self.keypairs.pop(key)
def get_public_key(self, sequence):
for_change, i = sequence
pubkey = (self.change_pubkeys if for_change else self.receiving_pubkeys)[i]
return pubkey
def get_private_key(self, sequence, password):
for_change, i = sequence
assert for_change == 0
pubkey = (self.change_pubkeys if for_change else self.receiving_pubkeys)[i]
pk = pw_decode(self.keypairs[pubkey], password)
# this checks the password
if pubkey != public_key_from_private_key(pk):
raise InvalidPassword()
return pk
def update_password(self, old_password, new_password):
if old_password is not None:
self.check_password(old_password)
if new_password == '':
new_password = None
for k, v in self.keypairs.items():
b = pw_decode(v, old_password)
c = pw_encode(b, new_password)
self.keypairs[k] = b
self.use_encryption = (new_password is not None)
class Deterministic_KeyStore(Software_KeyStore):
def __init__(self):
Software_KeyStore.__init__(self)
self.seed = ''
def is_deterministic(self):
return True
def load(self, storage, name):
self.seed = storage.get('seed', '')
self.use_encryption = storage.get('use_encryption', False)
def save(self, storage, name):
storage.put('seed', self.seed)
storage.put('use_encryption', self.use_encryption)
def has_seed(self):
return self.seed != ''
def can_change_password(self):
return not self.is_watching_only()
def add_seed(self, seed, password):
if self.seed:
raise Exception("a seed exists")
self.seed_version, self.seed = self.format_seed(seed)
if password:
self.seed = pw_encode(self.seed, password)
self.use_encryption = (password is not None)
def get_seed(self, password):
return pw_decode(self.seed, password).encode('utf8')
class Xpub:
def __init__(self):
self.xpub = None
self.xpub_receive = None
self.xpub_change = None
def add_master_public_key(self, xpub):
self.xpub = xpub
def get_master_public_key(self):
return self.xpub
def derive_pubkey(self, for_change, n):
xpub = self.xpub_change if for_change else self.xpub_receive
if xpub is None:
xpub = bip32_public_derivation(self.xpub, "", "/%d"%for_change)
if for_change:
self.xpub_change = xpub
else:
self.xpub_receive = xpub
_, _, _, c, cK = deserialize_xkey(xpub)
cK, c = CKD_pub(cK, c, n)
result = cK.encode('hex')
return result
def get_xpubkey(self, c, i):
s = ''.join(map(lambda x: bitcoin.int_to_hex(x,2), (c, i)))
return 'ff' + bitcoin.DecodeBase58Check(self.xpub).encode('hex') + s
class BIP32_KeyStore(Deterministic_KeyStore, Xpub):
root_derivation = "m/"
def __init__(self):
Xpub.__init__(self)
Deterministic_KeyStore.__init__(self)
self.xprv = None
def format_seed(self, seed):
return NEW_SEED_VERSION, ' '.join(seed.split())
def load(self, storage, name):
Deterministic_KeyStore.load(self, storage, name)
self.xpub = storage.get('master_public_keys', {}).get(name)
self.xprv = storage.get('master_private_keys', {}).get(name)
def save(self, storage, name):
Deterministic_KeyStore.save(self, storage, name)
d = storage.get('master_public_keys', {})
d[name] = self.xpub
storage.put('master_public_keys', d)
d = storage.get('master_private_keys', {})
d[name] = self.xprv
storage.put('master_private_keys', d)
def add_master_private_key(self, xprv, password):
self.xprv = pw_encode(xprv, password)
def get_master_private_key(self, password):
return pw_decode(self.xprv, password)
def check_password(self, password):
xprv = pw_decode(self.xprv, password)
if deserialize_xkey(xprv)[3] != deserialize_xkey(self.xpub)[3]:
raise InvalidPassword()
def update_password(self, old_password, new_password):
if old_password is not None:
self.check_password(old_password)
if new_password == '':
new_password = None
if self.has_seed():
decoded = self.get_seed(old_password)
self.seed = pw_encode( decoded, new_password)
if self.xprv is not None:
b = pw_decode(self.xprv, old_password)
self.xprv = pw_encode(b, new_password)
self.use_encryption = (new_password is not None)
def is_watching_only(self):
return self.xprv is None
def get_keypairs_for_sig(self, tx, password):
keypairs = {}
for txin in tx.inputs():
num_sig = txin.get('num_sig')
if num_sig is None:
continue
x_signatures = txin['signatures']
signatures = filter(None, x_signatures)
if len(signatures) == num_sig:
# input is complete
continue
for k, x_pubkey in enumerate(txin['x_pubkeys']):
if x_signatures[k] is not None:
# this pubkey already signed
continue
derivation = txin['derivation']
sec = self.get_private_key(derivation, password)
if sec:
keypairs[x_pubkey] = sec
return keypairs
def sign_transaction(self, tx, password):
# Raise if password is not correct.
self.check_password(password)
# Add private keys
keypairs = self.get_keypairs_for_sig(tx, password)
# Sign
if keypairs:
tx.sign(keypairs)
def derive_xkeys(self, root, derivation, password):
x = self.master_private_keys[root]
root_xprv = pw_decode(x, password)
xprv, xpub = bip32_private_derivation(root_xprv, root, derivation)
return xpub, xprv
def get_mnemonic(self, password):
return self.get_seed(password)
def mnemonic_to_seed(self, seed, password):
return Mnemonic.mnemonic_to_seed(seed, password)
@classmethod
def make_seed(self, lang=None):
return Mnemonic(lang).make_seed()
#@classmethod
#def address_derivation(self, account_id, change, address_index):
# account_derivation = self.account_derivation(account_id)
# return "%s/%d/%d" % (account_derivation, change, address_index)
#def address_id(self, address):
# acc_id, (change, address_index) = self.get_address_index(address)
# return self.address_derivation(acc_id, change, address_index)
def add_seed_and_xprv(self, seed, password, passphrase=''):
xprv, xpub = bip32_root(self.mnemonic_to_seed(seed, passphrase))
xprv, xpub = bip32_private_derivation(xprv, "m/", self.root_derivation)
self.add_seed(seed, password)
self.add_master_private_key(xprv, password)
self.add_master_public_key(xpub)
def add_xprv(self, xprv, password):
xpub = bitcoin.xpub_from_xprv(xprv)
self.add_master_private_key(xprv, password)
self.add_master_public_key(xpub)
def can_sign(self, xpub):
return xpub == self.xpub and self.xprv is not None
def get_private_key(self, sequence, password):
xprv = self.get_master_private_key(password)
_, _, _, c, k = deserialize_xkey(xprv)
pk = bip32_private_key(sequence, k, c)
return pk
class Old_KeyStore(Deterministic_KeyStore):
def __init__(self):
Deterministic_KeyStore.__init__(self)
self.mpk = None
def load(self, storage, name):
Deterministic_KeyStore.load(self, storage, name)
self.mpk = storage.get('master_public_key').decode('hex')
def save(self, storage, name):
Deterministic_KeyStore.save(self, storage, name)
storage.put('wallet_type', 'old')
storage.put('master_public_key', self.mpk.encode('hex'))
def add_seed(self, seed, password):
Deterministic_KeyStore.add_seed(self, seed, password)
self.mpk = self.mpk_from_seed(self.get_seed(password))
def add_master_public_key(self, mpk):
self.mpk = mpk.decode('hex')
def format_seed(self, seed):
import old_mnemonic
# see if seed was entered as hex
seed = seed.strip()
if seed:
try:
seed.decode('hex')
return OLD_SEED_VERSION, str(seed)
except Exception:
pass
words = seed.split()
seed = old_mnemonic.mn_decode(words)
if not seed:
raise Exception("Invalid seed")
return OLD_SEED_VERSION, seed
def get_mnemonic(self, password):
import old_mnemonic
s = self.get_seed(password)
return ' '.join(old_mnemonic.mn_encode(s))
@classmethod
def mpk_from_seed(klass, seed):
secexp = klass.stretch_key(seed)
master_private_key = ecdsa.SigningKey.from_secret_exponent(secexp, curve = SECP256k1)
master_public_key = master_private_key.get_verifying_key().to_string()
return master_public_key
@classmethod
def stretch_key(self, seed):
x = seed
for i in range(100000):
x = hashlib.sha256(x + seed).digest()
return string_to_number(x)
@classmethod
def get_sequence(self, mpk, for_change, n):
return string_to_number(Hash("%d:%d:"%(n, for_change) + mpk))
def get_address(self, for_change, n):
pubkey = self.get_pubkey(for_change, n)
address = public_key_to_bc_address(pubkey.decode('hex'))
return address
@classmethod
def get_pubkey_from_mpk(self, mpk, for_change, n):
z = self.get_sequence(mpk, for_change, n)
master_public_key = ecdsa.VerifyingKey.from_string(mpk, curve = SECP256k1)
pubkey_point = master_public_key.pubkey.point + z*SECP256k1.generator
public_key2 = ecdsa.VerifyingKey.from_public_point(pubkey_point, curve = SECP256k1)
return '04' + public_key2.to_string().encode('hex')
def derive_pubkey(self, for_change, n):
return self.get_pubkey_from_mpk(self.mpk, for_change, n)
def get_private_key_from_stretched_exponent(self, for_change, n, secexp):
order = generator_secp256k1.order()
secexp = (secexp + self.get_sequence(self.mpk, for_change, n)) % order
pk = number_to_string(secexp, generator_secp256k1.order())
compressed = False
return SecretToASecret(pk, compressed)
def get_private_key(self, sequence, password):
seed = self.get_seed(password)
self.check_seed(seed)
for_change, n = sequence
secexp = self.stretch_key(seed)
pk = self.get_private_key_from_stretched_exponent(for_change, n, secexp)
return pk
def check_seed(self, seed):
secexp = self.stretch_key(seed)
master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
master_public_key = master_private_key.get_verifying_key().to_string()
if master_public_key != self.mpk:
print_error('invalid password (mpk)', self.mpk.encode('hex'), master_public_key.encode('hex'))
raise InvalidPassword()
def check_password(self, password):
seed = self.get_seed(password)
self.check_seed(seed)
def get_master_public_key(self):
return self.mpk.encode('hex')
def get_xpubkeys(self, for_change, n):
s = ''.join(map(lambda x: bitcoin.int_to_hex(x,2), (for_change, n)))
mpk = self.mpk.encode('hex')
x_pubkey = 'fe' + mpk + s
return [ x_pubkey ]
@classmethod
def parse_xpubkey(self, x_pubkey):
assert is_extended_pubkey(x_pubkey)
pk = x_pubkey[2:]
mpk = pk[0:128]
dd = pk[128:]
s = []
while dd:
n = int(bitcoin.rev_hex(dd[0:4]), 16)
dd = dd[4:]
s.append(n)
assert len(s) == 2
return mpk, s
def update_password(self, old_password, new_password):
if old_password is not None:
self.check_password(old_password)
if new_password == '':
new_password = None
if self.has_seed():
decoded = self.get_seed(old_password)
self.seed = pw_encode(decoded, new_password)
self.use_encryption = (new_password is not None)
class Hardware_KeyStore(KeyStore, Xpub):
# Derived classes must set:
# - device
# - DEVICE_IDS
# - wallet_type
#restore_wallet_class = BIP32_RD_Wallet
max_change_outputs = 1
def __init__(self):
Xpub.__init__(self)
KeyStore.__init__(self)
# Errors and other user interaction is done through the wallet's
# handler. The handler is per-window and preserved across
# device reconnects
self.handler = None
def is_deterministic(self):
return True
def load(self, storage, name):
self.xpub = storage.get('master_public_keys', {}).get(name)
def save(self, storage, name):
d = storage.get('master_public_keys', {})
d[name] = self.xpub
storage.put('master_public_keys', d)
def unpaired(self):
'''A device paired with the wallet was diconnected. This can be
called in any thread context.'''
self.print_error("unpaired")
def paired(self):
'''A device paired with the wallet was (re-)connected. This can be
called in any thread context.'''
self.print_error("paired")
def can_export(self):
return False
def is_watching_only(self):
'''The wallet is not watching-only; the user will be prompted for
pin and passphrase as appropriate when needed.'''
assert not self.has_seed()
return False
def can_change_password(self):
return False
def derive_xkeys(self, root, derivation, password):
if self.master_public_keys.get(self.root_name):
return BIP44_wallet.derive_xkeys(self, root, derivation, password)
# When creating a wallet we need to ask the device for the
# master public key
xpub = self.get_public_key(derivation)
return xpub, None
class BIP44_KeyStore(BIP32_KeyStore):
root_derivation = "m/44'/0'/0'"
@classmethod
def normalize_passphrase(self, passphrase):
return normalize('NFKD', unicode(passphrase or ''))
def is_valid_seed(self, seed):
return True
def mnemonic_to_seed(self, mnemonic, passphrase):
# See BIP39
import pbkdf2, hashlib, hmac
PBKDF2_ROUNDS = 2048
mnemonic = normalize('NFKD', ' '.join(mnemonic.split()))
passphrase = self.normalize_passphrase(passphrase)
return pbkdf2.PBKDF2(mnemonic, 'mnemonic' + passphrase,
iterations = PBKDF2_ROUNDS, macmodule = hmac,
digestmodule = hashlib.sha512).read(64)
def on_restore_wallet(self, wizard):
#assert isinstance(keystore, self.keystore_class)
#msg = _("Enter the seed for your %s wallet:" % self.device)
#title=_('Restore hardware wallet'),
f = lambda seed: wizard.run('on_restore_seed', seed)
wizard.restore_seed_dialog(run_next=f, is_valid=self.is_valid_seed)
def on_restore_seed(self, wizard, seed):
f = lambda passphrase: wizard.run('on_restore_passphrase', seed, passphrase)
self.device = ''
wizard.request_passphrase(self.device, run_next=f)
def on_restore_passphrase(self, wizard, seed, passphrase):
f = lambda pw: wizard.run('on_restore_password', seed, passphrase, pw)
wizard.request_password(run_next=f)
def on_restore_password(self, wizard, seed, passphrase, password):
self.add_seed_and_xprv(seed, password, passphrase)
self.save(wizard.storage, 'x/')
keystores = []
def load_keystore(storage, name):
w = storage.get('wallet_type')
t = storage.get('key_type', 'seed')
seed_version = storage.get_seed_version()
if seed_version == OLD_SEED_VERSION or w == 'old':
k = Old_KeyStore()
elif t == 'imported':
k = Imported_KeyStore()
elif name and name not in [ 'x/', 'x1/' ]:
k = BIP32_KeyStore()
elif t == 'seed':
k = BIP32_KeyStore()
elif t == 'hardware':
hw_type = storage.get('hardware_type')
for cat, _type, constructor in keystores:
if cat == 'hardware' and _type == hw_type:
k = constructor()
break
else:
raise BaseException('unknown hardware type')
elif t == 'hw_seed':
k = BIP44_KeyStore()
else:
raise BaseException('unknown wallet type', t)
k.load(storage, name)
return k
def register_keystore(category, type, constructor):
keystores.append((category, type, constructor))
def is_old_mpk(mpk):
try:
int(mpk, 16)
except:
return False
return len(mpk) == 128
def is_xpub(text):
if text[0:4] != 'xpub':
return False
try:
deserialize_xkey(text)
return True
except:
return False
def is_xprv(text):
if text[0:4] != 'xprv':
return False
try:
deserialize_xkey(text)
return True
except:
return False
def is_address_list(text):
parts = text.split()
return bool(parts) and all(bitcoin.is_address(x) for x in parts)
def is_private_key_list(text):
parts = text.split()
return bool(parts) and all(bitcoin.is_private_key(x) for x in parts)
is_seed = lambda x: is_old_seed(x) or is_new_seed(x)
is_mpk = lambda x: is_old_mpk(x) or is_xpub(x)
is_private = lambda x: is_seed(x) or is_xprv(x) or is_private_key_list(x)
is_any_key = lambda x: is_old_mpk(x) or is_xprv(x) or is_xpub(x) or is_address_list(x) or is_private_key_list(x)
is_private_key = lambda x: is_xprv(x) or is_private_key_list(x)
is_bip32_key = lambda x: is_xprv(x) or is_xpub(x)
def from_seed(seed, password):
if is_old_seed(seed):
keystore = Old_KeyStore()
keystore.add_seed(seed, password)
elif is_new_seed(seed):
keystore = BIP32_KeyStore()
keystore.add_seed_and_xprv(seed, password)
return keystore
def from_private_key_list(text, password):
keystore = Imported_KeyStore()
for x in text.split():
keystore.import_key(x, None)
keystore.update_password(None, password)
return keystore
def from_old_mpk(mpk):
keystore = Old_KeyStore()
keystore.add_master_public_key(mpk)
return keystore
def from_xpub(xpub):
keystore = BIP32_KeyStore()
keystore.add_master_public_key(xpub)
return keystore
def from_xprv(xprv, password):
xpub = bitcoin.xpub_from_xprv(xprv)
keystore = BIP32_KeyStore()
keystore.add_master_private_key(xprv, password)
keystore.add_master_public_key(xpub)
return keystore
def xprv_from_seed(seed, password):
# do not store the seed, only the master xprv
xprv, xpub = bip32_root(Mnemonic.mnemonic_to_seed(seed, ''))
return from_xprv(xprv, password)
def xpub_from_seed(seed):
# store only master xpub
xprv, xpub = bip32_root(Mnemonic.mnemonic_to_seed(seed,''))
return from_xpub(xpub)
def from_text(text, password):
if is_xprv(text):
k = from_xprv(text, password)
elif is_old_mpk(text):
k = from_old_mpk(text)
elif is_xpub(text):
k = from_xpub(text)
elif is_private_key_list(text):
k = from_private_key_list(text, password)
elif is_seed(text):
k = from_seed(text, password)
else:
raise BaseException('Invalid seedphrase or key')
return k